
R E S E A R C H A R T I C L E
C O M P U T A T I O N A L B I O L O G Y
A Noisy Paracrine Signal Determines the Cellular
NF-kB Response to Lipopolysaccharide
Timothy K. Lee,1 Elissa M. Denny,1 Jayodita C. Sanghvi,1 Jahlionais E. Gaston,2

Nathaniel D. Maynard,1 Jacob J. Hughey,1 Markus W. Covert1*

(Published 20 October 2009; Volume 2 Issue 93 ra65)
D
ow

nl
Nearly identical cells can exhibit substantially different responses to the same stimulus. We monitored
the nuclear localization dynamics of nuclear factor kB (NF-kB) in single cells stimulated with tumor
necrosis factor–a (TNF-a) and lipopolysaccharide (LPS). Cells stimulated with TNF-a have quantitative
differences in NF-kB nuclear localization, whereas LPS-stimulated cells can be clustered into transient
or persistent responders, representing two qualitatively different groups based on the NF-kB response.
These distinct behaviors can be linked to a secondary paracrine signal secreted at low concentrations,
such that not all cells undergo a second round of NF-kB activation. From our single-cell data, we built a
computational model that captures cell variability, as well as population behaviors. Our findings show
that mammalian cells can create “noisy” environments to produce diversified responses to stimuli.
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INTRODUCTION

How can virtually identical cells in the same environment exhibit such
diverse phenotypes? This phenomenon has been observed in various sys-
tems; examples include differentiation to competence (1–3) and antibiotic
persistence (4) in bacteria, retinal development in Drosophila (5), and
galactose utilization in yeast (6). In many cases, the causative factor in
creating the diverse phenotypes was a “noisy” environment in which a
key factor was present at low concentrations (7, 8).

Nuclear factor kB (NF-kB) is a transcription factor family that regu-
lates the expression of hundreds of genes (9). Although primarily in-
volved in the innate immune response, NF-kB has been identified as an
important protein in such diverse processes as tumor progression in cancer
(10), learning (11), epigenetic regulation of gene expression (12), and
aging (13). Because of its importance, the NF-kB–related signaling
network has been relatively well studied, which, in turn, has made it the
primary test bed for systems biology approaches in mammalian cells. For
example, high-throughput and systems approaches have been used to re-
construct the NF-kB signaling network (14) and to determine target genes
(15–17) and transcription factor binding sites (18, 19) at the global level.
NF-kB activation has also been the subject of several computational
modeling studies, beginning with a detailed model of the effects of various
inhibitor of kB (IkB) proteins on NF-kB activation mediated by tumor
necrosis factor–a (TNF-a) (20), which characterized the oscillatory shuttling
of NF-kB across the nuclear membrane that is characteristic of TNF-a–
dependent NF-kB activation, and predicted the effects of transient TNF-a
signals on gene expression and NF-kB activation. The Hoffmann-Levchenko
(HL) model has since been expanded to include certain other components,
such as the activity of inhibitor of kB kinase (IKK) (21), feedback reg-
ulation by the ubiquitin-modifying enzyme A20 (22), and the effects of
varying TNF-a concentration (23). These and other studies (24–27) have
enhanced the understanding of NF-kB signaling pathway dynamics, par-
ticularly in response to TNF-a stimulation.

We were originally intrigued by the observation that NF-kB activation
undergoes damped oscillations in cells that are stimulated by TNF-a but
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activation is stable when lipopolysaccharide (LPS) is the stimulus (28)
(Fig. 1A). TNF-a stimulates the TNF receptor (TNFR), which interacts
with the cytoplasmic adaptor proteins RIP and TRAF, and LPS stimulates
the Toll-like receptor TLR4, which interacts with the cytoplasmic adaptor
proteins TRIF and MyD88 (Fig. 1B). The oscillatory behavior observed
with TNF-a stimulation depends on a negative feedback circuit due in
large part to the NF-kB–induced expression of the gene encoding inhibi-
tory protein IkBa (29–31). The stable activation observed with LPS stim-
ulation depends on the coordination of two independent pathways upstream
of NF-kB mediated through two different adaptor proteins, a MyD88-
dependent and a TRIF-dependent pathway (29, 32–35). By expanding the
HL model to include mathematical representations of the MyD88- and
TRIF-dependent pathways, we predicted that the stable activation of NF-kB
occurring in response to LPS stimulation depended on the contributions of
two pathways that oscillated out of phase with each other. The model sim-
ulations further indicated that oscillations were set out of phase by a time
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Fig. 1. LPS and TNF-a signal through separate receptors and pathways to
trigger NF-kB activation with different dynamics. (A) Population-based
computational models of NF-kB nuclear localization (20, 28). (B) A sche-
matic of NF-kB activation by TNF-a and LPS. Dashed line from TNF-a in-
duction to TNFR represents secretion of TNF-a. The red and green proteins
associated with TLR4 are the adaptor proteins TRAM and TRIF, respectively.
The dark blue and teal blue proteins associated with TLR4 are the adaptor
proteins Mal and Myd88, respectively.
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delay in the TRIF-dependent pathway, which we identified experimentally
as a gene expression event whereby the transcription factor interferon reg-
ulatory factor 3 (IRF-3) was activated and caused expression of the gene
encoding TNF-a. Secretion of TNF-a restimulated NF-kB through the
pathway mediated downstream of the TNFR, its own pathway (Fig. 1B).

The nuclear translocation dynamics of transcription factor NF-kB have
been observed at the single-cell levelwith fluorescent protein fusions (36–39).
These studies indicated that NF-kB nuclear localization in single cells differs
from the average localization observed in populations of cells. Theoretical
analyses of NF-kB dynamics with the Gillespie algorithm to model fluc-
tuations in chemical kinetics (40) and noise in gene transcription (41, 42)
have postulated that the average population-level behavior can be explained
from single-cell variation due to stochastic effects. In this report, we com-
bined live-cell imaging and computational modeling to characterize NF-kB
dynamics at the single-cell level in response to LPS and TNF-a.
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RESULTS

LPS and TNF-a trigger dynamically distinct activation
profiles for NF-kB
To compare TNF-a– and LPS-dependent NF-kB activation at the single-
cell level, we created a system to monitor near-endogenous amounts of
NF-kB in primary cells (fig. S1A) (37). The most common form of NF-kB
is a heterodimer composed of the transcription factors p50 and p65. We
cloned a p65–fluorescent protein (FP) fusion, with DsRed or enhanced
green fluorescent protein (EGFP), into a lentiviral system to stably infect
cells (43). Because researchers have disagreed about the effect of p65
overexpression on NF-kB dynamics (36, 44, 45), we mimicked the en-
dogenous regulation of NF-kB by cloning the 1.5 kb upstream of the relA
gene (encoding p65) into the lentiviral construct to control expression of
p65-FP and then infected relA-knockout 3T3 cells. The response of p65-FP
reconstituted cells to TNF-a at the population level was similar to the
response of wild-type 3T3 cells in terms of the degradation kinetics
and NF-kB–dependent expression of IkBa (fig. S1B). As in other studies
(20, 28), we focused on the first 4 hours of stimulation to minimize the
extensive downstream effects that follow NF-kB activation (16).

We monitored the movement of NF-kB to and from the nucleus by time-
lapse confocal microscopy of the p65-FP–expressing cells over 4 or more
hours in response to TNF-a or LPS (Fig. 2, A and D). Nuclear images
were analyzed to quantify the amount of nuclear NF-kB at any given time
(Fig. 2, B and C). This analysis revealed a key difference between cells
stimulated with TNF-a versus LPS. In the case of TNF-a, we saw that the
single-cell traces looked qualitatively similar, with most of the cells ex-
hibiting some oscillatory NF-kB behavior in agreement with fluorescence
microscopy studies with cells transfected with p65-FP (36, 37) and cells
isolated from p65-FP knock-in mice (46) (Fig. 2, A and B). In contrast,
the LPS-stimulated cells exhibited qualitative differences in NF-kB nuclear
localization at late times (>2 hours) after stimulation (Fig. 2, C and D).

Cluster analysis reveals three discrete populations
of cells, one for the TNF-a response phenotype and
two for the LPS response phenotype
To quantify the variation in cellular response for cells stimulated with
TNF-a or LPS, we grouped the NF-kB activation profiles by hierarchical
clustering and silhouette analysis (Fig. 3, A and B). The average silhou-
ette width is a metric of how well the data can be separated into a given
number of clusters and is commonly used for microarray analysis, among
other applications (47). Silhouette analysis (Fig. 3B) of the single-cell
profiles indicated that the data could be most appropriately divided into
ww
three major clusters. The first division in the dendrogram was between
the cells responding to TNF-a and cells responding to LPS. The primary
feature dividing the TNF-a and LPS responses is the substantially later
initial NF-kB nuclear localization in LPS-stimulated cells (Fig. 3C). The
second division involved only LPS-stimulated cells. All cells stimulated
with LPS showed initial NF-kB nuclear localization at roughly the same
time, then two populations emerged. For the LPS1 group, NF-kB left the
nucleus quickly, whereas for the LPS2 group, NF-kB persisted in the nu-
cleus for hours (Fig. 3D), more than double the time of either the TNF-a–
stimulated cells or the cells exhibiting the LPS1 phenotype (Fig. 3E).

We found that variation in cellular NF-kB dynamics is much greater
between clusters than the variation within a cluster (Fig. 3, A and B). For
example, the TNF-a–stimulated cells all exhibited similar, oscillatory be-
havior with only relatively minor differences in dynamics (fig. S2). The
first peak of NF-kB localization has little variation in timing, whereas the
second peak is more variable. In addition, the relative timing and amplitudes
between the first and second peak also vary between individual cells.

Computational modeling reveals potential
mechanisms underlying single-cell variation in
TNF-a–dependent NF-kB activation
We used computational modeling to determine the cause of the single-cell
variation for cellular response to TNF-a and LPS. The HL computational
model was based on population-level analysis and cannot predict the variant
behavior of individual cells. Because the qualitative behaviors exhibited
by single cells agreed generally with the population-level response, we
postulated that we could capture single-cell behavior by varying certain
parameters in the population model. To pursue this hypothesis, we per-
formed a sensitivity analysis to see in which cases a small parameter change
would lead to a high degree of variation in the NF-kB localization response
(Fig. 4A). Our analysis highlighted 11 parameters, including two initial
conditions, as suitable candidates to vary. The two initial conditions were
the resting concentrations of IKK and IkBa bound to NF-kB. These pa-
rameters all related to the upstream IKK signal or the negative feedback
by IkBa, as expected (25).

We assumed that the values of these 11 parameters could vary some-
what between cells and used our single-cell NF-kB time-course data to
identify possible distributions for these values. Each single-cell time
course was used to fit the set of 11 parameters with a gradient descent
method where fits were constrained to about one order of magnitude of
original parameter value (roughly a threefold increase or decrease). For
23 out of 30 cells, we identified parameter sets that gave a good model fit
of the data (Fig. 4B and fig. S3).

We hypothesized that, together, the distribution of these fit parameter
values should approximate the distribution across the cell population. It is
less likely that each individual fit parameter value corresponds spe-
cifically to the physical properties of a given cell. Our parameter dis-
tributions highlighted two main differences between the single-cell and
population data (Fig. 4C). First, there was a set of six parameter dis-
tributions with mean values that were higher for single cells than the
values of the same parameters that were observed for the population. This
would imply that deriving these parameters from population data could be
misleading, for example, because of single cells exhibiting asynchronous
oscillations (44).

A second set of parameter distributions had relatively large standard
deviations, so these parameters may be thought of as the key contributors
to cellular variation and noise in the single-cell response (Fig. 4C). In
general, noise-related effects on phenotype may be classified as intrinsic
(attributable to stochastic events inherent to gene expression) or extrinsic
(dependent on fluctuations in cellular environment or regulatory factors)
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(48, 49). The model parameters with the largest coefficients of variation
include IkBa translation, transcription, association with NF-kB, and
nuclear import rates, which correspond to sources of intrinsic noise
(49).

We tested our predicted parameter distributions by investigating the
initial concentration of the IkBa–NF-kB complex. We measured the av-
erage cytoplasmic fluorophore intensity in each cell for each data set. The
distribution of initial IkBa–NF-kB predicted by the fitted parameters is
similar to that detected experimentally in cells (Fig. 4D). In individual
single cells, the parameter fits were within one standard deviation of the
measured value in ∼70% of the cells (Fig. 4E).

It should be noted that these parameter distributions do not neces-
sarily represent biologically relevant kinetic rates, given the stochastic
nature of reactions at the single-cell level (40) and loose parameter sen-
sitivities in large models of biological systems (50). Other models exist
that explicitly model stochastic gene expression (37, 42), albeit without
all of the IkB isoforms that contribute to the response to TNF-a (20).
However, these findings underscore the importance of determining cer-
tain parameter values at the cellular level and suggest that not all pa-
rameters contribute equally to single-cell variability. Furthermore, the
cellular variation in initial concentrations of the IkBa-NF-kB complex
represents an independent validation of our single cell-based computa-
tional approach.

We wanted to see if the parameter distributions that we determined from
our single-cell time courses could be used to adapt the population-based
computational model to single-cell studies. We ran the model 10,000 times,
ww
with a different set of 11 parameter values randomly chosen from the dis-
tributions each time, and found that the new set of simulations recapitulated
both the variation in single-cell behavior and the population-level response
(Fig. 4F). Thus, a computational model that accounts for variation in cell
behavior may be a more accurate and comprehensive representation of
TNF-a–dependent NF-kB activation.
A paracrine TNF-a signal produces the late phase
of LPS-dependent NF-kB activation
Asmentioned above, the cells stimulatedwith LPS exhibitedmore qualitative
differences in theirNF-kB localization dynamics, clustering into a transient
and a persistent groupwith respect toNF-kBnuclear localization (Fig. 3, A
and D). These distinct clusters are present even when the stimulated cells
are clonal (fig. S4). LPS-dependent activation of NF-kB occurs through
two independent pathways, one that depends on MyD88 and another that
depends on TRIF (51). On the basis of our earlier work, it seemed possible
that the difference in behavior depended on which of these pathways were
activated. Therefore, we infected primarymouse embryo fibroblasts (MEFs)
thatwere deficient inMyD88orTRIFwith our p65-FP construct. TheTrif −/−

MEFs showed a peak activation of NF-kB (nuclear fraction >0.5) between
20 and 75min, whereas theMyD88−/−MEFs had peak activity between 60
and 115 min (Fig. 5A). Neither of these knockout MEFs had nuclear frac-
tion >0.5 after 130min, either individually or summed together, suggesting
that either a synergy between the two pathways exists or that interactions
from additional pathways are needed to recapitulate the full persistent response.
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Fig. 2. NF-kB nuclear localiza-
tion exhibits oscillatory dynam-
ics when cells are stimulated
with TNF-a but stable nuclear
accumulation when cells are sti-
mulated with LPS. (A and D)
Single-cell images of EGFP-p65
transduced relA−/− 3T3 cells ex-
posed to TNF-a (A) or LPS (D)
for the indicated times. (B) Time
course showing the NF-kB local-
ization in the cells in (A). (C) Time
course showing the NF-kB local-
ization in the cells in (D). The
colors used to highlight nuclei in
(A) and (D) correspond to traces
in (B) and (C). Time course data
were normalized by the minimum
and maximum values of nuclear
NF-kB during the time course
to account for the varying over-
all intensities in different cells.
All scale bars represent 25 mm.
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Late LPS-dependent activation of NF-kB through the TRIF pathway
depends on the induction of the gene encoding TNF-a by IRF-3 (28).
Consistent with this, by treating the p65-FP 3T3s with a soluble TNFR
protein to block the TNF-a signal,we abolished the late response ofNF-kB
(Fig. 5A). Previously, we reported that TNF-a is secreted in low concen-
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trations in response to signaling through the TRIF pathway (<30 pg/mL,
roughly corresponding to a ratio on the order of one TNF-a receptor to one
TNF-a ligand) (28). Here, we found that a greater number of MyD88−/−

MEFs failed to translocate NF-kB to the nucleus in response to LPS than
was observed for the p65-FP 3T3s and the Trif−/−MEFs (fig. S5). Based on
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these observations, we thought the NF-kB persistence in the nucleus, but
not the initial response, could depend on whether a given cell is stimulated
by an adequate amount of TNF-a.

There aremultiple possibilities for the propagation of the TNF-a signal.
With such low concentrations, it may be TNF-a acts as a strictly autocrine
signal: The secreted TNF-a may never or rarely pass the receptors located
on the secreting cell, in which case the variation in cell response is
determined by whether TNF-a is produced by a given cell. Alternatively,
if the signal is paracrine, then the variation is more likely due to the low
TNF-a concentration outside the cell, making the secondary TNF-a acti-
vation of NF-kB a stochastic event subject to extrinsic noise.

We applied multiple methods to differentiate between an autocrine
and a paracrine TNF-a signal. First, we looked for coupling of activation
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dynamics between neighboring cells. Although we found no correlation
between spatial distance and clustering distance in cells stimulated with
either TNF-a or LPS (fig. S6), this is not sufficient to rule out paracrine
signaling, because the range of a paracrine signal in tissue culture exper-
iments, with a relatively high ratio of culture medium to cells, can be on
the order of hundreds of cell lengths (52).

Therefore, we constructed a system to monitor the communication be-
tween cells through the secondary TNF-a signal (Fig. 5B). We used two
different p65-fluorescent protein fusion constructs (DsRed and EGFP) and
MEFs of different genotypes: wild-type cells that were responsive to LPS
and TLR4 deletion mutant (TLR4del) cells that were unresponsive to LPS
but still responsive to TNF-a. We transduced wild-type MEFs with p65-
DsRed and TLR4del MEFs with EGFP-p65 and stimulated the cells with
2
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Fig. 4. Characterizing and model-
ing the quantitative differences in
NF-kB localization dynamics for
TNF-a–stimulated cells. (A) Sen-
sitivity analysis of the base HL
model. Each parameter in themod-
el was varied ± 50%, and the
distance between the resulting
simulations and the base model
were calculated and added as
shown. We chose parameters
for which the score was 10% or
higher of the maximum value. (B)
Fitting the parameters to single-cell
data. The 11 parameters identified
in (A) were fit to cellular NF-kB ac-
tivation time courses as described
in Materials and Methods. Two
representative fits are shown and
the remaining fits can be found in
fig. S3. (C) The resulting distribu-
tions for all sets, shown as an av-
erage and SD as a percentage of
the base HLmodel (100%, dashed
line) value. The distributions most
closely fit a mixture of Gaussians,
with parameters as shown in ta-
ble S1. (D) Distribution of fitted and
experimental values for the pa-
rameter IkBa–NFkB0 (the initial
concentration of the IkBa and
NF-kB complex). (E) Correlation
between model fit and experi-
mental measurement plotted as
the cumulative fraction of cells
versus error. (F) Representative
and average results from a set of
10,000 model simulations where
the values of the 11 parameters
were randomly chosen from each
distribution.
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LPS. Individually, the TLR4del mutant cells show no activation of NF-kB
in response to LPS (fig. S7) and normal activation of NF-kB in response to
TNF-a (fig. S8). By growing both types of cells together, we observed the
transmission of the TNF-a signal from the LPS-responsive cells to the
LPS-unresponsive cells. In both cell types, NF-kB had localized to the nu-
cleus (Fig. 5, C and D). Cotreatment with soluble TNF receptor abolished
NF-kB activation in TLR4del cells when cultured with wild-type MEFs
(fig. S9). A decreased number of TLR4del cells showed nuclear NF-kB
in response to LPS when plating density was decreased (fig. S10). To de-
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termine whether the TNF-a secretion mediated by signaling through the
TRIF pathway is sufficient for paracrine signaling, we cultured MyD88−/−

and TLR4-deficient MEFs individually and together and stimulated the
cells with LPS.When cultured together and then stimulated, both cell types
showed similar lateNF-kBactivation kinetics (Fig. 5F), suggesting that they
are responding to the sameTNF-a signal. From this evidence of direct trans-
mission of the TNF signal, we conclude that the TNF-a signal is paracrine
and that persistent NF-kB activation is determined by the noisy event
mediated by low concentrations of TNF-a.
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Fig. 5. A noisy paracrine signal
determines the cellular NF-kB re-
sponse to LPS. (A) Average NF-kB
nuclear localization in Trif−/− MEFs
and in MyD88−/− MEFs, as well
as wild-type 3T3 cells (WT) pre-
treated with soluble TNF-a re-
ceptor (sTNFRII), over time. (B)
Schematic of the approach to
assess paracrine signaling by
TNF-a. WT or MyD88−/− and
TLR4-deficient (TLRdel or TLRd)
cells are grown together, each
labeled with a different color of
fluorescent protein. Activation
of NF-kB in TLRdel would occur
through the paracrine pathway
(Fig. 1B). (C) TLR4del and MEFs
cultured together and stimu-
lated with LPS (5 mg/ml). Nuclei
are outlined for clarity. (D) Single-
cell traces for the experiments
presented in (C). Bold lines cor-
respond to average behavior. (E)
TLR4d and MyD88−/− MEFs cul-
tured together and stimulated
with LPS (0.5 mg/ml). TLR4d cells
do not respond to LPS (left), but
do respond in the presence of
MyD88−/− MEFs (right). Although
not present in the field imaged,
MyD88−/− MEFs were present in
the culture. (F) Single-cell traces
for the experiments presented in
(E). Bold lines correspond to av-
erage behavior. (G) Represen-
tative and average results from
a set of 10,000 model simulations
where activation of the TRIF-
dependent pathway occurs as a
random event. All scale bars rep-
resent 25 mm.
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Addition of the paracrine TNF-a signal to the
computational model recapitulates single-cell and
population responses to LPS
To determine if inclusion of this TNF-a switch more accurately models
the LPS-dependent NF-kB response in single cells, we adapted the single
cell–based model for TNF-a stimulation with the parameter distributions
described above to include the MyD88 and TRIF pathway representations
from our previous work (28). We observed that, in response to LPS, the
TRIF-deficient MEFs (fig. S11) and the MyD88-deficient MEFs (fig.
S12) exhibited variations in activation time, with standard deviations of
7.7 and 11.2 min, respectively. Using the parameter distributions we ob-
tained for the response to TNF-a (table S1), the model predicted varia-
tions of 4.6 and 8.8 min, respectively. Because both the model and the
experimental results yield differences in activation time, we assumed that
models for the individual pathways include the information necessary to
recapitulate the experimentally observed variation in activation time and
that we could use the kinetic parameters relating the two pathways from
our previous study in the current model (28).

Therefore, we added one additional stochastic variable and the corre-
sponding parameter to determine whether the cells received the secondary
TNF-a signal and ran 10,000 simulations of the new model of NF-kB ac-
tivation in response to LPS. The resulting model accounted for both tran-
sient and persistent cellular behaviors and reproduced the population-level
response to LPS (Fig. 5G). Themodel includes at least some of the synergy
between the MyD88 and TRIF pathways, which was encoded in the com-
putational model as a linear addition of the IKK activation profiles created
by each pathway.

DISCUSSION

Previously, we found that LPS-dependent activation of NF-kB de-
pended on the integration of two upstream signaling pathways. Through
live-cell imaging, we observed two distinct NF-kB localization pat-
terns in single cells stimulated with LPS. By coculturing specifically
labeled cells of different genotypes together, we could also observe the
transmission of a paracrine TNF-a signal between cells. Based on these
observations, we present a framework for extending existing popula-
tion models of NF-kB activation to reflect the diverse responses of in-
dividual cells.

Several different sets of parameters and additions to the HL model have
been suggested (21, 23, 25, 27), with different rationales. Other models
include explicit representation of the stochastic processes of transcription
and translation to account for variations in single-cell responses (40–42).
Of these, only the original HL model has been extended to capture the
behavior of LPS-stimulated cells (28). We therefore modified the existing
LPS-dependent population model to capture the behavior of single cells.
This choice had the additional advantage of allowing us to determine
how the fit values of various parameters varies at the single-cell and pop-
ulation levels.

Our coculture system uses genetic mutants modified to fluoresce in
different channels to restrict the secretion and monitor the detection of
intercellular signals. This technique enabled us to experimentally in-
terrogate paracrine and autocrine signaling in living cells. Given the spa-
tial information that we also obtain with this method, it should be
possible to quantitatively analyze autocrine and paracrine signaling. This
should complement existing computational studies of intercellular sig-
naling (52).

Our computational and experimental approach shows that cells of iden-
tical genotype responding to the same stimulus can create a diverse response
consisting of qualitatively different behaviors. It remains to be seen whether
ww
varied NF-kB activation in response to LPS occurs in vivo. However, one
could imagine that multifaceted responses would be extremely useful to the
innate immune response, allowing for an extra level of cellular control that
does not require differentiation—in this case, an orchestrated and robust
response to infection.
MATERIALS AND METHODS

Cell culture and imaging
Using time-lapse confocal microscopy, we imaged primary MEFs and the
3T3 relA−/− cell line. TLR4d and TLR4del MEFs were obtained from
pregnant mice (Jackson Labs) at day 13 to 14 by standard procedures;
all other MEFs were generously provided by S. Akira and M. Yamamoto.
MyD88−/− mice can also be purchased through Oriental BioScience
(http://myv.ne.jp/obs/index.files/tlr_eng.htm).

To create clonal cell populations, 3T3 relA−/− p65-DsRed cells were
additionally transduced with H2B-GFP to assist in nuclear segmentation.
Cells were then seeded into 96-well tissue culture plates such that each
well received 0.25 cells on average. Clonal populations were isolated
from the well plate 1 week after seeding and were characterized by con-
focal microscopy. In response to LPS, these cells show both persistent
and transient NF-kB response phenotypes (fig. S4) within the sample
clonal population.

Coculture experiments were performed with MEFs of different geno-
types. TLR4-mutantMEFs harvested from JacksonLabsmicewere infected
with the p65 fluorescent protein constructs. Wild-type MEFs harvested from
the C57BL/6 background were infected with a different colored p65
construct. Cells of different phenotype were seeded at a 1:1 ratio on gelatin-
coated Labtek slides.

Cells were cultured on four- or eight-chambered coverslips (Labtek) at
densities of 75,000 and 35,000 cells per well, respectively, with Dulbecco’s
modified Eagle’s medium supplemented with 10% fetal bovine serum,
penicillin (100I U/ml), streptomycin (100 mg/ml), and 2 mM L-glutamine.
Twenty-four hours after seeding, cells were then imaged after stimulation
with TNF-a (10 ng/ml, Roche), LPS (0.5 mg/ml, Sigma), sTNFRII (R&D
Systems), or ultrapure LPS (5 mg/ml, InvivoGen, used for TLR4 deletion
mutants) with a Zeiss 510 confocal microscope (40× oil or 20× air objec-
tive) every 3 to 6min for several hours at 37±1°Cwith 5%CO2. For primary
cell culture, plates and chambers coverslips were coated with gelatin (0.2%,
Sigma G1393) or fibronectin (human, 25 mg/ml, Millipore).

Nuclear NF-kB monitoring system
DNA constructs encoding EGFP-p65 and p65-DsRed fusion proteins
(gifts from M. Meffert and M. White, respectively) were cloned into the
FUW lentiviral vector (43) under the control of the first 1.5 kb before the
relA gene (fig. S1A). Vectors were then used to infect cells by established
protocols (43), thereby reconstituting p65 to endogenous amounts and
apparently normal p65 activation (Fig. 2D) and IkBa expression (fig.
S1B) (20).

Image analysis
The images were analyzed to identify nuclei and quantify nuclear intensity
with the Image Processing Toolbox in MATLAB. Images were segmented
automatically by one of two methods: (i) Canny edge detection, followed
by classification and selection based on region area and eccentricity, or (ii)
marker-controlled watershed segmentation, where markers were derived
from previous selections. Nuclear boundaries were markedmanually when
selection failed by the above methods. A software package that can also
achieve this purpose is CellTracker (53). For each set of images, all of
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the cells that were adequately visible over the entire course of the experi-
ment were chosen for quantification of NF-kBmotion to and from the nu-
cleus. Cells that divided during the course of the experiment or left the field
of view were not quantified. The average nuclear intensity was used as a
metric to describe the nuclear NF-kB concentration over time. The sum of
nuclear and cytoplasmic intensity over time remained relatively constant
through the course of the experiment, suggesting that photobleaching
was not a major effect (fig. S13). Fluctuations in the focal plane and
inhomogenous cytoplasmic intensity across a single cell caused average
cytoplasmic intensity to fluctuate greatly between time points. As a result,
the nuclear/cytoplasmic ratio showed possibly erroneous fluctuations not
present in the average nuclear intensity. Thus, average nuclear intensity
was chosen and each time course was normalized to the minimum and
maximum average nuclear intensity during the time course. To examine
whether coupling between cells was a major effect, we compared the
cosine distance used in clustering compared to the spatial distances be-
tween nuclei (fig. S6).

Parameter fitting
To model the NF-kB nuclear response to TNF-a, we used the HL model
(20), which was provided as a Mathematica file by A. Hoffmann. The
model was fit to the single-cell data by an algorithm that found the best
fit, between 0.3 and 3 times the base model parameter value, for each of
the 11 parameters that we identified as most sensitive. Because the param-
eter values are often coupled(54), we restricted the change in each pa-
rameter to one-fourth of the change calculated for the parameters singly.
Parameter sets converged for each cell after 200 to 400 steps. Fits for 30 cells
were examined (fig. S3) and 23 cells were chosen as having satisfactory best
fits. A comparison of the distance between the fit and experimental data and
average distances in experimental data showed the error in fits is less than the
order of variance between cells (fig. S14). The parameter distributions could
bemost closely approximated as a mixture of twoGaussians, for which the
parameters are given in table S1.

Stochastic LPS model
For the LPS model, we used a slightly modified version of our earlier LPS
model (28). Because experimentally we found that the first nuclear NF-kB
entry after LPS stimulation was later than occurred in the population-based
model, we changed three parameters: The time constants associated with
the MyD88 and TRIF signals were both set to t = 20 min, and the time
delay that precedes activation of the TRIF pathway was set to 50 min.
The integrated response of these two pathways is implemented as previously
described (28). To represent the stochastic switch, we compared a cutoff
parameter in themodel (0.55, determined from Fig. 4, D and F) to a random
number between 0 and 1; simulations with randomly generated values
greater than the cutoff received the secondary TNF stimulus. MATLAB
files for model simulations are found in hard copy as part of this supplement
and are available at www.simtk.org.

SUPPLEMENTARY MATERIALS
www.sciencesignaling.org/cgi/content/full/2/93/ra65/DC1
Fig. S1. Lentiviral expression construct and activation of NF-kB in cells reconstituted with
EGFP-p65.
Fig. S2. Metrics of variability in the TNF-a response.
Fig. S3. Parameter fitting to single-cell data.
Fig. S4. Clonal cells stimulated with LPS.
Fig. S5. Cells unresponsive to LPS.
Fig. S6. Lack of correlation between NF-kB dynamics and spatial location.
Fig. S7. TLR4del MEFs (EGFP-p65) treated with LPS.
Fig. S8. TLR4del MEFs (EGFP-p65) treated with TNF-a.
Fig. S9. TLR4del MEFs (EGFP-p65) cultured with wild-type MEFs and treated with LPS
and soluble TNFR (sTNFRII).
ww
Fig. S10. Coculture plating density influences the activation of NF-kB in TLRdel cells.
Fig. S11. Trif−/− MEFs exposed to LPS.
Fig. S12. MyD88−/− MEFs exposed to LPS.
Fig. S13. Total cellular fluorescence during a typical experiment.
Fig. S14. Single-cell fit distances compared to global variation between cells.
Table S1. Parameter distributions from single-cell fitting.
MATLAB files for simulations
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