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SUMMARY

Increasing evidence has shown that population
dynamics are qualitatively different from single-cell
behaviors. Reporters to probe dynamic, single-cell
behaviors are desirable yet relatively scarce. Here,
we describe an easy-to-implement and generalizable
technology to generate reporters of kinase activity for
individual cells. Our technology converts phosphory-
lation into a nucleocytoplasmic shuttling event that
can be measured by epifluorescence microscopy.
Our reporters reproduce kinase activity for multiple
types of kinases and allow for calculation of active
kinase concentrations via a mathematical model.
Using this technology,wemade several experimental
observations that had previously been technically-
unfeasible, including stimulus-dependent patterns
of c-Jun N-terminal kinase (JNK) and nuclear factor
kappa B (NF-kB) activation. We also measured JNK,
p38, and ERK activities simultaneously, finding that
p38 regulates the peak number, but not the intensity,
of ERK fluctuations. Our approach opens the possi-
bility of analyzing a wide range of kinase-mediated
processes in individual cells.

INTRODUCTION

Ongoing efforts have shown that multicellular systems are best

understood as a combination of heterogeneous single-cell be-

haviors (Lahav et al., 2004; Shankaran et al., 2009; Tay et al.,

2010). Intrinsic noise generates cell-to-cell variation that can

be critical for cellular survival, development, and differentiation

(Balázsi et al., 2011). In response to changing environments,

cells also generate complex signaling dynamics that encode

relevant information for gene expression, proliferation, or stress

responses. Indeed, bulk population dynamics are often qualita-

tively different from single-cell behaviors (Albeck et al., 2013;

Cai et al., 2008; Mettetal et al., 2008; Purvis et al., 2012; Santos

et al., 2007).

Dynamic single-cell reporters are essential to study single-

cell biology, yet the number of molecular events that can be
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dynamically monitored in an individual cell are small. Such re-

porters have led to the successful measurement of metabolic

state (Berg et al., 2009), transcription factor localization (Cai

et al., 2008), second messenger concentration (Zhao et al.,

2011), and even protein activities (Ting et al., 2001; Zhang

et al., 2001) in live single cells. In the latter category, kinase

activities are of particular interest. It has been estimated that

30% of cellular proteins are phosphorylated on at least one res-

idue (Cohen, 2000; Ptacek et al., 2005). Kinases are known to

regulate multiple and diverse biological functions, including

the cell cycle, the innate immune response, development,

and cell differentiation (Ubersax and Ferrell, 2007).

To date, Förster resonance energy transfer (FRET) sensors

have been the most commonly used method to measure kinase

activity dynamically in single cells (Fosbrink et al., 2010; Fritz

et al., 2013; Ting et al., 2001; Zhang et al., 2001). Such sensors

have provided exciting new insights into how kinases are acti-

vated in single cells. However, FRET sensors have encountered

challenges to their widespread adoption. They often have a low

signal-to-noise ratio and do not accurately reflect the downregu-

lation of the kinase, most likely because the closed conformation

of the FRET sensor is highly stable, and its phosphorylated sites

cannot be accessed by the phosphatases (Komatsu et al., 2011).

Perhaps most significantly, they require two fluorescent proteins

and thus limit the number of outputs that can be observed simul-

taneously in any given cell. As signaling networks are known to

be highly integrated, it would be highly desirable to measure a

particular kinase activity together with multiple other activities

or states in the same living cell.

Here, we describe a strategy to generate genetically encoded

biosensors for kinase activity named kinase translocation re-

porters (KTRs). Our approach is based on the concept of

converting phosphorylation into a nucleocytoplasmic shuttling

event. Although phosphorylation-regulated nucleocytoplasmic

translocation in certain specific and naturally occurring proteins

has been reported (Gu et al., 2004; Komeili and O’Shea, 1999;

Nardozzi et al., 2010) and, in some cases, used as single-cell re-

porters (Hahn et al., 2009; Hao et al., 2013; Spencer et al., 2013),

this concept has never before been exploited to make a general

class of synthetic reporters.

We have extensively explored the sequence space and gener-

ated a set of rules that allowed us to generate reporters for mul-

tiple types of kinases, including mitogen activated protein (MAP)
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and AGC kinases. Our method uses a single fluorescent protein

for each kinase and reliably recapitulates kinase activity dy-

namics—both the up- and downregulation—in live single cells.

Using KTR technology, we measured c-Jun N-terminal kinase

(JNK) activity dynamics in single cells within the context of the

innate immune signaling network, showing that different inputs

are encoded with different dynamics. Finally, as a proof of prin-

ciple of the multiplexing capabilities of KTR technology, we have

dynamically measured JNK, p38, and ERK activities simulta-

neously in single living cells and gained insight on how p38 reg-

ulates ERK signaling.

RESULTS AND DISCUSSION

A Synthetic Reporter of Kinase Activity Based on
Nuclear Translocation
Our initial goal was to construct a single color reporter for JNK

activity translating phosphorylation into a localization change.

JNK is a central stress-activated protein kinase (SAPK) that

coordinates multiple physiological processes like the stress

response, innate immune signaling, or development (Bagowski

and Ferrell, 2001). We found that the transcription factor c-Jun

had a potential nuclear export signal (NES) nearby one of the

two major JNK phosphorylation sites (specifically, the S73 site)

(Figure 1A). We hypothesized that the phosphorylation state of

this site could impact the nuclear export of c-Jun, leading to

the conversion of a phosphorylation event into a nucleocytoplas-

mic shuttling event.

Accordingly, we fused different c-Jun fragments to the fluo-

rescent protein Clover (Lam et al., 2012) and analyzed whether

JNK activity (stimulated by the protein synthesis inhibitor aniso-

mycin) altered the localization of any of these constructs. We

found that fragments of c-Jun without its C-terminal nuclear

localization signal (NLS) have a weak but reproducible localiza-

tion change from the nucleus to the cytoplasm (Figure 1B).

Further fragment analysis revealed that a minimal peptide of

55 amino acids (Jun(29–84)), containing the JNK docking site,

two phosphorylation sites (S63 and S73), and the identified

NES, is sufficient to alter the localization of the fluorescent pro-

tein in the presence of anisomycin (Figures 1B, S1A, and S1B

available online). This translocation can be blocked with both

a specific JNK inhibitor as well as a nonphosphorylatable

mutant construct (S73A). We concluded that the shuttling event

depends on JNK phosphorylating S73 (Figures 1B, S1C, and

S1D). Quantitative western blot analysis revealed that express-

ing Jun(29–84)-Clover does not alter endogenous c-Jun phos-

phorylation by JNK and that both are phosphorylated and

dephosphorylated with similar dynamics (Figures S2A and

S2B). Moreover, c-Jun-dependent gene expression remained

unaltered in Jun(29–84)-Clover-expressing cells (Figure S2C).

These results suggested that phosphorylation near the c-Jun

NES can enhance nuclear export and that such phosphorylation

is being converted into a localization change without changing

the endogenous dynamics or consequences of JNK and c-Jun

activities.

In order to improve the dynamic range of the observed locali-

zation change, we rationally designed a set of mutant variants to

explore the sequence space of Jun(29–84) (Figure 1C) (see Sup-
plemental Information for a complete description and analysis).

We reasoned that incorporating a negatively regulated NLS

(Hahn et al., 2009; Komeili and O’Shea, 1999; Nardozzi et al.,

2010) together with the positively regulated NES in the same

engineered construct could greatly increase the dynamic range.

We began by exploring NES and NLS variants independently.

We found that a suboptimal bipartite NLS (bNLS) can be

negatively regulated by phosphorylation at either end of the

linker region (see Supplemental Information for complete

details). In contrast, negatively charged amino acids within the

NES sequence increase its basal export activity, which is suffi-

cient to explain why phosphorylation conditionally increases

the export rate of the NES.

By combining a negatively phosphoregulated NLSwith a posi-

tively phosphoregulated NES into a single construct, we were

able to increase the dynamic range of nucleocytoplasmic trans-

port by 3-fold (Figures 1D and S2D–S2F and Movie S1). We

designated this new construct the JNK kinase translocation re-

porter (JNK KTR). Importantly, the localization change observed

with JNK KTR was readily visible (Figure 1E) and quantifiable

(Figure 1F). This localization change could be specifically in-

hibited by targeting JNK, but not p38 (Figures 1E, 1G, S3A,

and S3B). We also observed that a p38 inhibitor caused hyper-

activation of JNK KTR (see below for further details). Further-

more, a nonphosphorylatable mutant (JNK KTRAA) localized

strictly to the nucleus, whereas a phosphomimetic mutant

(JNK KTREE) was restricted to the cytoplasm, indicating that

the negative charge introduced by the phosphorylation is

responsible for the change in import and export activities (Fig-

ures 1E and S3A).

JNK KTR Dynamics Reflect JNK Activity
To validate the dynamics of JNK KTR, we analyzed JNK activity

in response to the cytokine IL-1b as it induces a weaker and

more physiological response than anisomycin. IL-1b is a proin-

flammatory cytokine involved in the innate immune signaling

response that activates multiple signaling pathways, including

the JNK, p38, and NF-kB pathways (Weber et al., 2010). We

compared JNK KTR dynamics with the most common tech-

niques used to detect JNK activity: western blot (WB) (Figure 2A),

immunofluorescence (IF) (Figures 2B and 2C) and a FRET-based

JNK reporter (JNKAR) (Figures 2D–2F), all in response to the

same dose of IL-1b. Results showed that JNK and c-Jun phos-

phorylation measured by WB or IF strongly correlates with JNK

KTR data at both population and single-cell levels (Figures 2A–

2C and S3C–S3G). Importantly, the level of JNK KTR expression

did not impact the measured cytoplasmic:nuclear (C/N) ratios of

the JNK KTR (Figures S3H and S3I). Moreover, in contrast to the

JNK KTR data, the JNKAR FRET reporter (Komatsu et al., 2011)

measurements failed to capture the downregulation of the kinase

(Figure 2F).

To test the functionality of KTR technology in other cell types,

we also expressed JNK KTR in HeLa, HEK293, and RAW 264.7

cells. In all cell types, anisomycin induced an expected change

in localization (Figure S3J). Taken together, these results suggest

that JNK KTR translocation reliably represents JNK activity dy-

namics and can be successfully implemented in a diverse panel

of cell lines.
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Figure 1. Development of Kinase Translocation Reporter Technology

(A) Schematic representation of mouse c-Jun protein showing JNK docking site (JNK DS), phosphorylation sites (P sites), basic leucine zipper DNA-binding

domain (b-ZIP), and NLS. Consensus nuclear export signal (NES, F indicates hydrophobic amino acid) and serine 73 sequence context are shown.

(B) 3T3 cells expressing indicated c-Jun fragments fused to Clover were stimulated with anisomycin (50 ng/ml) and imaged at indicated time points. Where

indicated (+ JNK inhibitor [inh.]), cells were preincubated for 45 min with 10 mM JNK inhibitor VIII. Representative cells are shown for each construct or condition.

(C) Engineered protein sequences aligned to the wild-type c-Jun sequence. Residues involved in nuclear import, nuclear export, or phosphorylation are shown in

green, purple, or bold, respectively. Changes from wild-type sequence are highlighted in blue.

(D) 3T3 cells expressing the Jun29–84-Clover variants shown in (C) were treated with anisomycin (50 ng/ml) and imaged over time. Dynamic range was calculated

for each cell as (anisomycin-basal)/basal C/N ratio and normalized by the mean wild-type dynamic range. Pink band corresponds to the observed wild-type

dynamic range variation. Data are represented as the mean ± SD from more than 50 cells for each variant.

(E) 3T3 cells expressing JNK KTR (WT or with phosphoresidues mutated to alanine, AA, or glutamate, EE) were stimulated with anisomycin (50 ng/ml) and imaged

at indicated time points. Where indicated (+ JNK inh. or + p38 inh.), cells were preincubated for 45 min with 10 mM JNK inhibitor VIII or 10 mM SB203580.

Representative cells are shown for each construct or condition.

(F) 3T3 JNK KTR cells were stimulated with anisomycin (50 ng/ml), imaged, and quantified as described in the Experimental Procedures. C/N refers to cyto-

plasmic over nuclear intensities. Data are represented as the mean ± SD from 158 cells.

(G) 3T3 JNK KTR cells were pretreated with 10 mM JNK inhibitor VIII or 10 mM SB203580 (JNK inh. and p38 inh., respectively) and stimulated with anisomycin

(50 ng/ml). When indicated (JNK inh. at t120), cells were treated with 10 mM JNK inhibitor VIII. Images were quantified as described in the Experimental Pro-

cedures. Data represent mean ± SD from more than 100 cells.

See also Figures S1 and S2.
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Figure 2. JNK KTR Dynamics Validation

(A) JNK KTR cells were stimulated with IL-1b

(1 ng/ml), imaged, and quantified as described in

the Experimental Procedures. Three independent

experiments were performed, resulting in 980

single cells measured. KTR data represent the

mean ± SD from the three experiment means

(averaged to mimic in silico WBs). P-JNK WB

data are calculated as the fraction of phosphor-

ylated over total and represent the mean ± SD

from three independent experiments. All data

sets were normalized between 0 and 1 for

comparison.

(B) 3T3 JNK KTR cells were stimulated with IL-1b

(1 ng/ml) for indicated times and fixed with

4% PFA for quantitative IF analysis. Ten images

were taken for each time point and quantified

as described in the Experimental Procedures.

For each cell, C/N KTR ratio (red) and phospho-

JNK intensity (black) were determined. All data

sets were normalized between 0 and 1 for

comparison. Data represent the mean ± SD

from more than 500 cells for each time

point obtained from two independent experi-

ments. IF data are overlaid on the dynamic

JNK KTR data set (blue) obtained for (A). Note

that, in this case, JNK KTR dynamic data

represent the mean ± SD from all individual

cells (n = 980), obtained in three independent

experiments.

(C) IF data obtained in (B) represented as contour

scatterplot. Single-cell JNK KTR ratio and phos-

pho-JNK intensity from all time points are shown.

Contour color represents areas of increasing data

point density. Raw scatterplots fitted to a linear

regression are shown together with Pearson cor-

relation value R and P values.

(D) 3T3 JNK KTR cells and 3T3-expressing FRET

JNKAR were stimulated with IL-1b (1 ng/ml) and

imaged at indicated time points. FRET image was

calculated as described in the Experimental Pro-

cedures. Representative cells are shown for each

technique over time.

(E) 3T3 JNK KTR single-cell dynamic data ob-

tained for (A). Five randomly selected single-cell

traces are shown.

(F) FRET JNKAR cells were stimulated with IL-1b (1 ng/ml) imaged and quantified as described in the Experimental Procedures. Data represent the mean ± SD

from all individual cells (n = 67) obtained from two independent experiments. Five randomly selected single cell traces are shown.

See also Figure S3.
KTR Technology Can Be Applied to Multiple Types of
Kinases
We hypothesized that the design principles we discovered for

JNK KTR could be used to generate synthetic single-cell re-

porters for other kinases. To test this hypothesis, we followed

two different strategies, depending on the mechanism of spec-

ificity for each kinase. For kinases that operate through distant

docking sites (e.g., MAP kinases), we exchanged the JNK

docking site with other docking sites found in substrates

for other kinases (i.e., Mef2C for p38 and Elk1 for ERK)

(Chang et al., 2002). Using this approach, we constructed

functional KTRs for ERK and p38 (Figures 3A–3C and S4A–

S4C). The KTRs are much more sensitive than the localization

of the respective kinase, as we verified with experiments
tracking MAP kinase localization (compare Figure 3 with Fig-

ures S4D–S4G).

In contrast to MAP kinases, AGC kinases target substrates

based on the context of the phosphorylation site. We therefore

decided to adapt our KTR construction, mutating a naturally

occurring substrate to introduce a bNLS and aNESwithout inter-

fering with the critical residues for phosphorylation. Using this

approach, we converted a fragment of the PKA substrate

HDAC8 (which has no localization signals naturally) into a dy-

namic single-cell reporter (Figure 3D). In each case, the KTR

was both responsive and specific to the expected stimulus and

inhibitor (Figures 3 and S4C).

These results indicate that KTR technology can be applied to

other kinases simply and with minimal optimization. Moreover,
Cell 157, 1724–1734, June 19, 2014 ª2014 Elsevier Inc. 1727
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Figure 3. KTR Technology Is Generalizable to Other Kinases

(A) 3T3 cells expressing JNK KTR were stimulated with anisomycin (50 ng/ml),

imaged, and quantified as described in the Experimental Procedures. Sche-

matic representation of the engineered reporter is shown for all panels. Data

represent the mean ± SD of more than 100 cells. Cells were preincubated with

media (control), 10 mMJNK inhibitor VIII (JNK inh.), 10 mMSB203580 (p38 inh.),

or 100 nM PD032591 (ERK inh.).

(B) 3T3 cells expressing p38 KTR were stimulated with anisomycin (50 ng/ml),

imaged, and quantified as described in the Experimental Procedures. Cells

were pretreated or not with kinase inhibitors as in (A).

(C) 3T3 cells expressing ERKKTRwere stimulated with basic fibroblast growth

factor-2 (bFGF2, 100 ng/ml), imaged, and quantified as described in the

Experimental Procedures. Cells were pretreated or not with kinase inhibitors

as in (A).

(D) 3T3 cells expressing PKA KTR were stimulated with the PKA activator

forskolin (10 mM) imaged and quantified as described in the Experimental

Procedures. Cells were pretreated with the specific PKA inhibitor H89 (30 mM)

(+ PKA inh.) or not (control). Where indicated, H89 (30 mM) was added at time

120 min (+ PKA inh. at t = 120).

See also Figure S4.
recently reported mammalian CDK2 and yeast PKA kinase re-

porters (Hao et al., 2013; Spencer et al., 2013) have the same

naturally occurring arrangement of bNLS, NES, and phosphory-

lation sites in their sequences. As a result, the KTR strategy has

been successful for three classes of kinases (MAPKs, CDKs, and

AGC kinases), suggesting that the technology is generalizable.
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Calculating the Single-Cell Concentration of Active
Kinase via a Mathematical Model
The KTR technology offered an exciting new possibility to esti-

mate, quantitatively, the concentrations of active kinase in indi-

vidual cells. To do this, we used the chemical reactions of the

KTR (phosphorylation, dephosphorylation, import, and export)

to construct a mathematical model of the system (see supple-

mental equations in the Extended Experimental Procedures for

details). The model describes the quantitative relationship be-

tween the dynamics of active kinase and the dynamics of the

KTR. We then calibrated the model specifically for the JNK

KTR (Figure 4A). To estimate the import and export rate con-

stants of the unphosphorylated and phosphorylated states of

the KTR, we treated cells expressing the nonphosphorylatable

JNK KTRAA or the phosphomimetic JNK KTREE construct with

the nuclear export inhibitor leptomycin B (Figures S5A and S5B).

Importantly, a similar approach to estimate concentrations of

active kinase in single cells could not be usedwith FRET sensors.

This is because no method is currently known for producing a

constitutively phosphomimetic FRET sensor, and without such

a control, it is impossible to know the fraction of active wild-

type sensor. As a result, critical parameters of the system remain

unspecified. In contrast, the phosphomimetic construct required

for KTR models is straightforward to implement and leads to

novel calculations of active kinase concentration.

In addition to providing the import and export rate constants,

the JNK KTRAA and the JNK KTREE constructs also give us the

expected C/N ratio of the wild-type JNK KTR if 0% or 100% of

the wild-type JNK KTR molecules in a cell were phosphorylated.

For a KTR to bemost useful and for accurate estimation of active

kinase concentrations, the KTR should be responsive to the

range of active kinase concentrations under baseline and stimu-

lated conditions. Based on our parameterization with the JNK

KTRAA and JNK KTREE constructs, we calculated the relation-

ship between active JNK concentration and steady state C/N

ratio (Figure 4B). Interestingly, JNK KTR reaches only about

80% saturation in response to IL-1b, TNF- a, and LPS. We

conclude that the responsive range of the JNK KTR is almost

ideallymatched to the range of active JNK induced by physiolog-

ical stimuli.

We noticed that all four of the nonphosphorylatable JNK KTR

mutants (JNK KTRAA, JNK KTRAE, JNK KTREA, and JNK KTREE)

exhibited a similar degree of cell-to-cell variability in the C/N ratio

(Figure S5C). In addition, the C/N ratios of two different nonphos-

phorylatable mutants in the same cell were highly correlated

(Figures S5D and S5E). This suggests that variability in the C/N

ratio of the wild-type JNK KTR and all other KTRs is caused

not only by variability in levels of active kinase but also by noise

in the import and export rates. To distinguish between these two

sources of variability in individual cells, we generated a cell line

expressing both JNK KTR-Clover and an in-cell control

construct, JNK KTRAE-mRuby2 (Lam et al., 2012) (Figures 4C,

S5D, and S5E). Although this construct cannot be phosphory-

lated, the bNLS and NES signals are still functional. As a result,

the C/N ratio variability is caused strictly by differences in general

import and export rates.

Surprisingly, although the C/N ratios of two nonphosphorylat-

able mutants (JNK KTRAE and JNK KTREA) correlated well in
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B C Figure 4. KTR Modeling Allows Estimating

Active JNK Kinase Concentration in Single

Cells

(A) Schematic representation of the mathematical

model, see the supplemental equations in the

Extended Experimental Procedures for a complete

description of the parameters depicted in this

figure.

(B) Model-based relationship between steady-

state C/N JNK KTR ratio and concentration of

active JNK. Gray areas indicate the range of C/N

ratios observed (at basal or peak times) when cells

are stimulated with 1 ng/ml IL-1b (data represent

the distribution of C/N ratio between 25th and 75th

percentiles).

(C) 3T3 cells expressing JNK KTR Clover (solid

line) and JNK KTRAEmRuby2 (super index in-

dicates A and E mutations on the phosphorylation

sites) (dashed line) were stimulated with IL-1b

(1 ng/ml), imaged, and quantified as described in

the Experimental Procedures. The activation dy-

namics for each protein in four randomly chosen

individual cells are shown.

(D) Cells were treated as in (C). Observed C/N ratio

(blue line), estimated active kinase concentra-

tion obtained as described in the Experimental

Procedures (green line), and fitted C/N ratio using the estimated concentration of active kinase for that particular cell (red dots) are shown for four randomly

chosen individual cells.

(E) Cells were treated as in (B). Each row of the heat map corresponds to an individual cell. Corrected JNK KTR C/N ratio and estimated concentration of active

JNK are displayed in tandem for each cell. No normalization was used for the corrected JNK KTR C/N ratio. Heat maps represent 195 cells and two independent

experiments.

See also Figure S5.
single cells, the C/N ratios of JNK KTRAE and wild-type JNK KTR

correlated very weakly (Figures S5D and S5E). This observation

suggests that the variability of the wild-type JNK KTR is primarily

caused not by noise in import and export rates but by variability

in basal JNK activity. A similar finding has been made in yeast,

where basal MAP kinase activity has been shown to accelerate

the response time of the high osmolarity glycerol (HOG1)

pathway (Macia et al., 2009). However, little is known about

this phenomenon in mammalian MAPK pathways.

We also observed the dynamics of the wild-type JNK KTR and

in-cell control in response to IL-1b. Our subsequent analysis

showed that nuclear import and export noise is negligible

compared to the localization change induced by JNK activation

(Figure 4C). We then used the model to estimate the concentra-

tion of active kinase over time in single cells (Figures 4D, 4E, and

S5F–S5H, see supplemental equations in the Extended Experi-

mental Procedures for details). Our analysis suggests that the

baseline concentration of active JNK is between 0 and 15 nM,

and that, upon treatment with IL-1b, active JNK concentration

peaks between 20 and 80 nM (Figure S5G). Consistent with

the data from western blots (Figures 2A, S2A, S2B, S3C, and

S3D), the C/N ratio of the JNK KTR closely tracks the estimated

concentration of active JNK (Figures 4D and 4G).

Taken together, these results indicate that, for most applica-

tions, the C/N ratio of the wild-type KTR, even without an in-

cell control, is a sensitive and accurate proxy for kinase activity.

However, the in-cell control remains useful for generating more

accurate calculations of kinase activity in single cells. In addition,

the in-cell control can also be used to compare ratios between
cell lines and to calibrate the system when a stimulus affects

general import or export rates. Finally, the simplicity of the KTR

model structure, as well as the straightforward, standardizable

method for model parameterization all suggest that the method

could be readily applied to other KTRs to obtain active kinase

concentrations in single cells.

KTR Technology Applied to Novel Biological
Measurements
Finally, we were anxious to use KTR technology to perform novel

measurements—in particular, multifactorial analysis of live single

cells. We first investigated how JNK and the transcription factor

NF-kB act in a coordinated fashion to generate specificity in

innate immune signaling. Accordingly, we introduced JNK

KTR-mCerulean3 (Markwardt et al., 2011) into previously

described RelA�/� 3T3 p65-DsRed H2B-EGFP cells (Tay et al.,

2010) and isolated a clonal line. We then stimulated cells with

three different innate immune inputs (TNF-a, IL-1b, and LPS),

spanning three orders of magnitude in concentration, and

measured p65 and JNK KTR nucleocytoplasmic translocation

dynamics in each individual cell (Figures 5A, 5B, and S6). Trans-

location of JNK KTR (indicating activation of JNK) was transient

inmost cells, with a time to peak that correlatedwell with the time

to peak of nuclear p65 (Figures 5B and 5C). In particular, for both

JNK KTR and p65, the timing of the response was slower for LPS

than for either TNF-a or IL-1b. In addition, in response to TNF-a

and IL-1b, JNK KTR translocation tended to precede p65 trans-

location by 6–12 min—a finding made possible by the fine time

resolution offered by KTR technology.
Cell 157, 1724–1734, June 19, 2014 ª2014 Elsevier Inc. 1729
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Figure 5. KTR Technology Provides a New Dimension for Analyzing the Innate Immune Signaling Network

(A) RelA�/� 3T3 cells expressing H2B-EGFP and p65-DsRed were infected with JNK KTR-mCerulean3, and a clonal cell line was isolated (cell line 3B8). 3B8 cells

were stimulated with TNF-a (10 ng/ml) and imaged at indicated times. Representative cells are shown for each channel over time.

(B) Clonal line 3B8 was stimulated with the indicated concentration of TNF-a, IL-1b, or LPS, imaged, and quantified as described in the Experimental Procedures.

Each row of the heat map corresponds to a single cell; JNK KTR and nuclear p65 (p65) dynamics are displayed in tandem for each cell (>300 cells total, three

independent experiments), with each trace normalized between 0 and 1 for each reporter.

(C) The amount of time elapsed at the first peak of activity for JNK KTR and p65-dsRed. Data come from (B), and dot size represents the number of cells. Gray line

indicates x = y.

(D) Clonal line 3B8 was stimulated with indicated concentrations of IL-1b, imaged, and quantified as described in methods. Twenty-five randomly chosen cells

(blue) and the average of all cells (>300) (red) are shown.

(E–J) 3B8 cells were stimulated with indicated concentrations of TNF-a (E and H), IL-1b (F and I), or LPS (G and J). Correlations between JNK KTR and p65 peak

amplitude (E, F, and G) or time to first peak (H, I, and J) are shown. Dot size represents the number of cells. Gray line indicates x = y.

See also Figures S6 and S7.
At the single-cell level, we found that the JNK response varied

between cells, most notably in the basal state (i.e., unstimulated

cells growing in 1%calf serum), aswell as during downregulation

of activity (Figures 5D and S6). We also observed that JNK KTR
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oscillated in some, but not all, cells upon stimulation with TNF-a

or IL-1b (Figures 5D, S7A, and S7B). These findings would have

been very difficult or impossible to obtain using population as-

says, which blend together asynchronous cellular responses,



or using the JNK FRET sensor, which is too slow in reporting

downregulation of JNK (Figure 2F).

Detailed 2D analysis of the single-cell response—taking JNK

and p65 simultaneously into account—showed that the ampli-

tude and the time to the first peak of JNK and p65 are differently

used to encode dose at the single-cell level. For example, stim-

ulation with either TNF-a or IL-1b yields JNK and p65 peak inten-

sities that are positively correlated with one another across

ligand concentration (Figures 5E and 5F). In contrast, cells

respond to LPS with timing that is independent of concentration

and without correlation between peak JNK and p65 amplitudes

(Figure 5G).

The correlation between the timing of the response for JNK

and p65 was different. In this case, the time to the first peak of

activity for both reporters seemed to be correlated and dose

dependent under both LPS and IL-1b stimulation conditions,

but not for TNF-a (Figures 5H–5J). These data strongly suggest

that multiple innate immune inputs can be differently interpreted

by the same signaling network by generating different dynamic

patterns of key effectors.

Finally, as MAP kinases are known to regulate each other, we

explored how the threeMAP kinases JNK, ERK, and p38 dynam-

ically interact in single cells. Accordingly, we generated a cell line

expressing four different fluorescent proteins (4C cell line): ERK

KTR-Clover, p38 KTR-mCerulean3, JNK-KTR-mRuby2, and

H2B-tdiRFP (Filonov et al., 2011) (Figure 6A). This cell line

allowed us to simultaneously measure the activity dynamics of

all three MAP kinases in single cells over entire cell cycles (Fig-

ure 6B). Our data confirmed that ERK activity in NIH 3T3 cells

fluctuates under basal conditions with dynamics similar to those

previously described in MCF-10 cells (Albeck et al., 2013) (Fig-

ure 6B). Interestingly, previous studies (Shankaran et al., 2009)

showed periodic oscillations of extracellular signal-regulated

kinase (ERK) localization upon epidermal growth factor (EGF)

stimulation. However, in NIH 3T3 cells, the basal fluctuations

are visible only with ERK KTR, as ERK localization itself does

not oscillate (Figures S4F and S4G). This observation highlights

the utility of using KTR technology as a more direct assessment

of kinase activity.

Moreover, our data suggest that the basal activity of both ERK

and p38 correlates with the cell cycle. In particular, we found that

ERK fluctuations are more frequent in the beginning of the cell

cycle, whereas basal activation of p38 tends to be higher toward

the end of the cell cycle (Figure 6C).

Next, we considered the interactions between the kinases.

Using experiments at the population level, others have previ-

ously described the inhibition of ERK by p38 (Jensen et al.,

2013; Westermarck et al., 2001). This inhibition is important

because p38 has been shown to regulate cell-cycle progression

(Joaquin et al., 2012). Therefore, a better understanding of how

p38 regulates ERK can provide some insight into how SAP

kinases regulate the cell cycle. To study this interaction at the

single-cell level, we measured the dynamics of ERK, p38, and

JNK activation in response to anisomycin. Upon anisomycin

treatment, activation of JNK was more transient than activation

of p38 (Figure 6D). Moreover, after treatment with anisomycin,

inhibition of JNK only affected JNK, whereas inhibition of p38

caused an increase in both JNK and ERK activities. These results
suggest that p38 activity represses both the ERK and JNK path-

ways (Figure 6E).

Furthermore, the single-cell analysis revealed that p38 inhibits

ERK fluctuations by reducing the number of peaks rather than

their intensity (Figures 6F, S7C, and S7D). Given that the time be-

tween ERK fluctuations has been shown to encode proliferation

signals (Albeck et al., 2013), ERK inhibition by p38 provides a

plausiblemechanism for cell-cycle regulation upon stress. These

observations demonstrate that KTR technology has an unprece-

dented potential to enable the generation of multidimensional

data sets.

In summary, KTR technology is an easy-to-implement, gener-

alizable strategy for developing reporters of kinase activity in live

cells. We have shown how KTRs enable measurement of single-

cell activation dynamics of multiple signaling pathways simulta-

neously and with high time resolution. Furthermore, construction

and parameterization of a mathematical model to represent KTR

activity is both mathematically and experimentally straightfor-

ward and enables the estimation of active kinase concentrations.

Although we emphasize that FRET sensors remain powerful

tools in this area, particularly in their capacity to elucidate the

subcellular distribution of kinase activity, the multiplexing capa-

bilities of KTR technology open the possibility of measuring

single-cell dynamics of signaling networks rather than signaling

pathways by relatively simple and cost-effective means. We

anticipate that this strategy will contribute significantly to our

understanding of the mechanisms underlying dynamic signal

transduction in individual living cells.

EXPERIMENTAL PROCEDURES

Cell Line Generation

Engineered sequences were generated by Gibson assembly (Gibson et al.,

2009) into pENTR vectors and then sequenced and transferred to pLenti

DEST vectors using Gateway Cloning Technology. Lentiviral vectors were

transfected into a 293FT cell line together with third generation packaging

plasmids. Packaged lentivirus was used to infect 3T3s 48 hr later. Drug

selection was added (Puromycin 1 mg/ml, Blasticidin 1 mg/ml, or Hygromycin

50 mg/ml [InvivoGen]) 24 hr postinfection. Cells were imaged to confirm fluo-

rescent protein expression 3–5 days later.

Cells were cultured in Dulbecco’smodified Eagle’smedium (DMEM) (Invitro-

gen) supplemented with 2 mM L-glutamine (GIBCO), 100 U/ml penicillin,

100 mg/ml streptomycin (GIBCO), and 10% fetal bovine serum (Omega Scien-

tific) or calf serum (Colorado). Derivates of RelA�/� 3T3 were cultured in 10%

FBS, whereas derivates of NIH 3T3 were cultured in 10% FCS.

Imaging

Cells were seeded at 7,000 cells/well onto glass coverslip 96-well plates

(Nunc) coated with 10 mg/ml fibronectin (Millipore). The next day, media

were changed to imaging media (DMEM without phenol red with 1% FBS or

FCS, see above) at least 1 hr prior to imaging. Cell lines without a genetically

encoded nuclear marker were incubated with 50 ng/ml Hoechst (Sigma) to

assist nuclear segmentation. Cells were imaged with a Nikon Eclipse Ti fluo-

rescence microscope controlled by Micromanager (Edelstein et al., 2010).

Temperature (37�C), CO2 (5%), and humidity were held constant during the ex-

periments. Five blank positions (media only) were imaged for every experiment

and used to flat field the rest of the images.

Image Quantification

Flatfielding and image registration were performed using custom Matlab soft-

ware. Segmentation and object quantification was performed with CellProfiler

(Kamentsky et al., 2011). Nucleus and a five-pixel-wide cytoplasm ring
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Figure 6. KTR Technology Allows Output Multiplexing

(A) 3T3 cells expressing indicated fusion proteins (4C cell line) were imaged under basal conditions over time. Representative cells are shown for each time

point.

(B and C) 4C cell line was imaged every 8 min without stimulation and quantified as described in the Experimental Procedures without stimulation. Six repre-

sentative cells (B) and heat maps for 196 cells (C) are shown. For each cell, ERK, p38, and JNK KTRs were quantified from mitotic exit to mitotic entry.

(D and E) 4C cell line was stimulated with Anisomycin (A) (50 ng/ml) where indicated (black arrow) and treated with 10 mMJNK inhibitor VIII (Ji) or 10 mMSB203580

(pi) (red or blue arrows, respectively). Images were taken every 8 min and quantified as described in Methods. Heat maps for more than 100 cells are shown.

(F) Peaks of ERK activity from data presented in (C) and (E) were identified using custom software. Distributions of number of peaks per 500 min (top) and

average peak intensity (bottom) are shown for three conditions; no stimuli (blue), Anisomycin 50 ng/ml (red), or Anisomycin 50 ng/ml and 10 mM SB203580 (pi)

(black).

See also Figure S7.
(cytoring) were segmented for each cell using Hoechst or H2B fused fluores-

cent proteins and quantified in each channel. Tracking and manual curation

were performed using custom Matlab and Python software. Median intensity

values for each object were extracted and used to calculate ratios. KTRs

cytoring over nuclear intensities were calculated to intuitively reflect activity.

Nuclear p65 intensity was normalized using the cytoplasmic intensity under
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basal conditions. For Figures 1D and S2D–S2F, basal and 30 min postaniso-

mycin cytoplasmic over nuclear ratio was quantified. Dynamic range was

calculated for each cell as (anisomycin-basal)/basal C/N ratio and normalized

by themean wild-type dynamic range. For heat maps shown in Figures 5B, 6C,

and 6E, each tracewas normalized between 0 and 1.Whenmore than one KTR

was compared (Figures 6D and 6E), each trace was normalized using as



minimum and maximum the inhibitor and stimulated mean ratios obtained in

Figure 3.

FRET Analysis

For FRET JNKAR experiments, H2B-mRuby2 3T3 cells were transfected with

JNKAR1EV plasmid (Komatsu et al., 2011) (kindly donated by Dr. Kazuhiro

Aoki) 24 hr prior to imaging. The mRuby2 image was used to segment the

nuclei. YFP, CFP, and FRET images were taken and corrected for signal bleed

through as previously described (Feige et al., 2005). FRET image was divided

by CFP image, and the resulting image was used to quantify FRET signal in the

cytoplasm.

Immunofluorescence

Cells were seeded at 12,000 cells/well onto glass coverslip 8-well imaging

slides (Lab-tek) coated with 10 mg/ml fibronectin (Millipore). The next day,

media were changed to imaging media (DMEM without phenol red with 1%

FBS or FCS) at least 1 hr prior to stimulation. Cells were stimulated for indi-

cated times, fixed with 4% paraformaldehyde, and permeabilized with PBS

0.5% Triton X-100. Blocking and antibody incubations were done in PBG

buffer (PBS, 0.2% cold water fish gelatin [Sigma], 0.5% BSA [Sigma]).

Phospho-SAPK/JNK (Thr183/Tyr185) (81E11) Rabbit mAb (4668, Cell

Signaling) and Phospho-c-Jun (Ser63) II Antibody (9261, Cell Signaling) were

used as primary antibodies. Goat anti-Rabbit (Cy5) (ab97077, abcam) second-

ary antibody was used to detect primary antibodies. 10 ng/ml DAPI was used

to stain the nuclei for segmentation purposes. Ten multichannel images (DAPI,

mClover, and Cy5) were taken for each IF condition. Images were segmented

as described above, and median intensities for mClover and Cy5 channels

were obtained. JNK phosphorylation was calculated as the sum of nuclear

and cytoplasmic intensities, whereas JUN phosphorylation corresponded to

nuclear Cy5 intensity.

Quantitative Western Blotting

Cells were grown to 80% confluence onto six-well plates, and media were

changed to 1% FBS or FCS media for 1 hr prior to stimulation. After stimula-

tion, cells were harvested, and proteins were extracted in 150 ml of RIPA buffer

containing protease and phosphatase inhibitors. Proteins were resolved in

4%–12%gradient SDS PAGE gels (BioRad) and transferred into low autofluor-

escence PVDF membranes (Millipore). Blocking and antibody incubations

were done with LICOR blocking buffer. The primary antibodies used were

as follows: Phospho-SAPK/JNK (Thr183/Tyr185) (81E11) Rabbit (4668, Cell

Signaling), Phospho-c-Jun (Ser63) Rabbit (9261, Cell Signaling), Phospho-c-

Jun (Ser73) Antibody (9164, Cell Signaling), JNK1 (2C6) Mouse (3708, Cell

Signaling), c-Jun (5B1) Mouse (ab119944, abcam), and GFP Rabbit (ab290,

abcam). Membranes were scanned using a LICOR scanner and quantified

using ImageStudioLite software.

Quantitative Gene Expression Analysis

Cells were grown to 80% confluence onto six-well plates, and media were

changed to 1%FBSor FCSmedia for 1 hr prior to stimulation. After stimulation,

cells were harvested, and RNA was extracted using RNeasy Mini Kit (74104

Quiagen). cDNA was produced using High Capacity cDNA Reverse Transcrip-

tion Kit with RNase Inhibitor (4374966, Applied Biosystems). Quantitative PCR

was performed using Taqman gene expression assay (Life Technologies).
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