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Materials and Methods 
Mapping the clinical features of Mendelian diseases to phecodes 

To characterize Mendelian diseases using EHR data, we needed to express the 
clinical descriptions of Mendelian diseases available in OMIM, a catalog of human 
genetic disorders and diseases, in terms of EHR-derived phenotypes. We used phecodes 
to define phenotypic features from the EHR. Phecodes are defined by hierarchical 
groupings of ICD-9 codes and were developed for phenome-wide associations studies. 
They have been validated in a broad range of genetic association studies, and have been 
shown to replicate 66% of known genetic associations for a diverse set of phenotypes 
with an area under the received operator characteristic curve of 0.83.(21) The current 
version of phecodes (V1.2), used in this paper, can be downloaded at 
http://phewascatalog.org.  

We used an existing map between clinical descriptions in OMIM and the Human 
Phenotype Ontology (HPO), a controlled vocabulary created to describe phenotypic 
abnormalities as well as modes of inheritance and clinical course of disease.(3) The 
clinical descriptions in OMIM have been annotated with HPO terms.(20) We manually 
mapped 3,459 of HPO terms to 890 unique phecodes. Many of the mapped pairs were not 
exact matches. Most often, the HPO term was more specific than the mapped phecode 
(e.g. HPO term “neurogenic bladder” is mapped to the phecode for “functional disorders 
of bladder”). In some instances, the best available phecode was narrower than its 
corresponding HPO term (e.g., the HPO term “retinopathy” is mapped to the phecode for 
“nondiabetic retinopathy”). 2,358 HPO terms did not map to phecodes, either because the 
HPO term was too specific to be ascertained by claims data (e.g., “depletion of 
mitochondrial DNA in liver”), too general (e.g., “abnormality of the kidney”), or 
pertained to non-pathogenic variation not typically captured in a medical setting (e.g., 
“thin clavicles”).  

When creating the map, we annotated several classes of terms that were likely to 
refer to special populations: those related to pregnancy (e.g. preeclampsia), infancy (e.g. 
neonatal hypotonia), childhood (e.g. delayed puberty), and abnormalities present at birth 
(e.g. syndactyly). Because the analyses in this paper were based on adult cohorts, we 
excluded phenotypes that pertain to congenital conditions, infancy, childhood, or 
pregnancy. Application of these filters eliminated 1,440 mapped and unmapped HPO 
terms. The designations of “congenital,” “infantile,” “pediatric,” and “pregnancy-related” 
are available as part of the phecode-HPO map so that different types of features can be 
included or excluded in subsequent analyses. In all, 2,382 uniquely mapped HPO terms 
were used in the analysis to calculate PheRS. It is important to note that while the process 
of mapping and excluding was subjective (and thus subject to disagreement), this work 
was done before our association analyses and without referring to the underlying disease 
definitions so as not to bias our results (See Table S12 for the mapping from HPO term 
identifier to phecode). 
 
Calculating a phenotype risk score 

The PheRS is a means of capturing a phenotypic pattern in a single number. It is 
analogous to a genetic risk score (GRS), which is commonly used to estimate an 
individual’s risk of a disease or trait by summing up multiple risk SNPs. Using the HPO 
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terms linked to a Mendelian disease and our HPO-phecode map, we described each 
disease as a set of phecodes. We then weighted each phecode based on the inverse 
prevalence of the code in a given population. For our research, we used our entire test 
population to calculate the frequencies, but one could use an external reference 
population as well. Given a population of N individuals, the weight for phenotype p is 
calculated as: 

!" = $%& '("
 
 

where np is the number of individuals with phenotype p. The weighting is analogous 
to the inverse document frequency statistic commonly used in natural language 
processing to express the relative importance of a word in a document. We applied this 
weighting so that an individual with a single rare feature of a disease will have a higher 
score than an individual with a single common feature.  

For an individual i, the PheRS for a single disease defined by m phecodes is 
calculated as: 
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Description of cohorts 

We validated PheRS using diagnosed cases and matched controls with individuals 
from the Vanderbilt University Medical Center (VUMC) Synthetic Derivative (SD). The 
SD comprises the de-identified medical records of ~2.5 million individuals and includes 
essentially all elements of the EHR (e.g. clinical documents, lab results, billing codes).  

Our genetic analyses used BioVU, a de-identified DNA biobank linked to the 
SD.(33) No links to identifiers are preserved in BioVU, and thus data cannot be returned 
to participants. A total of 30,216 adults (age >= 18) linked to genotype data from the 
Illumina HumanExome BeadChip were used in the genetic association analyses. The 
cohort was ascertained previously for five different criteria: (1) eligibility as case or 
control in one of 31 pharmacogenetics studies (2) availability of longitudinal data with 
primary care visits (3) presence in the cancer registry (4) old age with longitudinal data 
(5) presence of rare diseases or conditions ascertained via billing codes. Because our 
work involved rare variants, signals may easily be drowned out by samples that have 
non-germline variation or are otherwise compromised. Thus, we filtered out 4,695 
individuals with evidence of hematological malignancies, blood transfusions, or stem cell 
transplants prior to the date the blood sample used for genotyping was drawn, as well as 
patients who visited VUMC exclusively for cancer care. All individuals included in the 
study had at least one outpatient encounter, and 63% had at least one inpatient stay at the 
hospital recorded in their EHR. Using STRUCTURE(34) to determine ancestry, we 
divided the uncompromised population into 21,701 individuals of European ancestry and 
3,820 individuals of non-European ancestry (primarily African ancestry). The European 
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cohort sample was used as the discovery set, while the non-European cohort was used for 
replication.  

We also leveraged a second genotyped set of individuals for replication from the 
Marshfield Clinic Personalized Medicine Research Project.(35) Marshfield Clinic 
contributed a cohort of 10,124 European adults linked with ICD-9 codes and Illumina 
HumanExome BeadChip data. From this population, we filtered out 683 compromised 
individuals (as above), leaving a cohort of 9,441 adults of European ancestry for 
replication.  
 
Applying the PheRS to data from the EHR  

The weights for each phecode phenotype were calculated independently for each 
cohort. For example, the phecode for proteinuria has a prevalence of 3.9% (853/21,701) 
in the discovery cohort and 8.6% (814/9,441) in the Marshfield cohort, so the weight for 
this phenotype is 1.41 and 1.06 respectively (see Table S13 for weights of each phecode 
for each cohort). 

The HPO ontology provides phenotype annotations for 3,927 diseases described in 
OMIM and linked to one or more genes. Not all of these diseases, however, may be 
defined by a PheRS. We used only diseases that could be described by at least three 
unique phecodes and for which at least half of the HPO terms were mapped to unique 
phecodes. The latter restriction was designed to filter out diseases likely to be 
insufficiently described by the available phecodes. For example, 3-M Syndrome is 
annotated by 34 unique HPO terms, only 5 of which are mapped to unfiltered phecodes; 
the remaining terms describe characteristic facial and skeletal anomalies that are either 
unmapped or excluded because they pertain to birth defects and neonatal phenotypes. 
After applying these filters, 1,896 OMIM diseases can be profiled using PheRS linked to 
1,667 (known or suspected) causal genes through OMIM (as of 09/01/2015). We further 
filtered this list to those for which we had relevant SNPs in our discovery cohort, as 
described below, resulting in a total of 1,204 Mendelian diseases profiled (see Table S14 
for details on the Mendelian diseases tested). 

 
Validating the PheRS for six Mendelian diseases 

The phenotype risk score is intended to assign a value to an individual based on their 
similarity to a particular disease profile. To be effective, it needs to be both sensitive and 
specific. Applied to a population, a PheRS should rank individuals with disease A higher 
than those who do not have disease A (sensitivity). Furthermore, the PheRS based on 
disease A should not systematically rank individuals with disease B higher than those 
who do not have disease B (specificity). We tested this premise on six diseases: cystic 
fibrosis (CF), Marfan syndrome, phenylketonuria, achondroplasia, Li–Fraumeni 
syndrome, and hereditary hemochromatosis (HH). Phenylketonuria is unique among 
these six diseases because of a combination of prenatal screening and a highly effective 
treatment that essentially eliminates the effects of the disease. Following our analysis, we 
recognized that this disease effectively served as a negative control. These diseases were 
chosen in consultation with physician researchers based on the following criteria: (1) 
there were at least 20 clinically diagnosed adults in the Vanderbilt SD cohort of ~2.5 
million (2) their feature set was rich enough to be profiled using PheRS and (3) their 
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clinical impact was high. These represent the only diseases evaluated for this phase of the 
project and were selected prior to any analysis. 

For each of the six diseases, potential cases were identified using billing code and 
text phrase searches in clinical notes. All potential cases were then manually reviewed, 
and only true cases were used in the analysis. All individuals with a text mention of the 
disease or the causal gene in their notes or with a billing code for the disease were 
excluded from the possible list of controls. Cases were matched to controls by age, record 
length (both +/- one year), sex, and race; the ratio of controls to cases was 10:1 or more, 
depending on availability. Cases and matched controls were assigned a PheRS for the 
target disease (e.g. CF cases/controls were scored using the CF PheRS definition). We 
used Wilcox rank-sum to test the null hypothesis that the scores for cases and controls 
were the same. We then permuted the PheRS definitions for each case/control group, and 
applied the Wilcox rank-sum test to each combination of PheRS definitions and case-
control groups (e.g. comparing the CF-based PheRS score in cases/controls for Marfan 
syndrome).  

Following analysis, we manually reviewed the EHR data for the highest-scoring 
controls to see if they potentially had the disease in question or had a different genetic 
disease. High-scoring controls were defined as those controls with a PheRS greater than 
the third quartile PheRS for cases; for phenylketonuria, we reviewed the top ten scoring 
controls, since the PheRS was not elevated relative to cases. The review took place six 
months after the initial case/control sets were defined; information that had accrued in the 
Synthetic Derivative during that time was included in review, allowing us to find controls 
who were diagnosed subsequent to the original data pull. See Table S1 for the PheRS 
quartiles for cases and controls and the number of controls reviewed. 
 
Testing for associations between the PheRS and rare variants in Mendelian genes  

Our discovery cohort of 21,701 adults of European ancestry, as well as the two 
replication cohorts, were genotyped on the Illumina HumanExome BeadChip. The 
platform is designed to sample variants from the coding region of genes and captures 
210,333 missense, 5,158 stop gain, and 9,263 synonymous variants in over 18,000 genes. 
To focus on rare variants, we excluded all variants with a minor allele frequency >1% in 
the discovery cohort. We required that each variant have at least 10 heterozygotes or 
homozygotes for the rare allele (roughly 0.02% minor allele frequency). We further 
filtered variants to those in genes associated with Mendelian conditions that could be 
used to create a PheRS. Variants with a missingness rate of >1% were excluded, and 
individuals with a missing genotype rate >1% were excluded. We further excluded 118 
SNPs with Hardy-Weinberg equilibrium (HWE) p<10-4 from all analyses. After filtering, 
we had 6,188 rare variants in 1,096 unique Mendelian genes. Most of the variants were 
non-synonymous.  

We annotated the ExomeBead Chip variants using Variant Effect Predictor (VEP) 
on GRCh37.(36) Consequences of variants as described by the Sequence Ontology were 
ascertained by using the canonical transcript from Ensembl. In the case where multiple 
consequences were listed for a single variant/gene pair, the most severe consequence was 
chosen. The canonical transcript ID was used to annotate each variant according to 
HGVS nomenclature (See Table S15 for variants tested). 
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All Mendelian diseases in this study have previously been associated with one or 
more genetic variants. We matched the variants to Mendelian diseases suitable for PheRS 
profiling using the OMIM GeneMap. We only tested variants in genes that were known 
to cause the Mendelian disease that defined the PheRS profile (for example, we only 
tested the scores for cystic fibrosis against variants in CFTR). Although this strategy 
prevented us from finding associations between disease profiles and genes not already 
associated with a Mendelian disease, it preserved the statistical power necessary to 
ascertain the phenotype effects of rare variants. After filtering for genes with at least one 
testable SNP in our cohort, we conducted 7,520 association tests on 1,204 Mendelian 
diseases and 6,188 SNPs in 1,096 unique genes. Though many known pathogenic 
variants are autosomal recessive, all tests for association assumed a dominant mode of 
inheritance (see Table S16 for all association results in discovery cohort). 

We manually reviewed the charts of all individuals who carried associated variants 
(q<0.1). To determine if they were diagnosed with the target Mendelian disease, we 
conducted text searches and reviewed problem lists and notes from clinic visits. 
Urinalyses for calcium oxalate were pulled for all heterozygotes and homozygotes for the 
AGXT variant. 
 
PheWAS analysis 

We conducted a PheWAS analysis on the 6,188 variants included in the discovery 
analysis using the Fisher’s exact test. 1,734 phecodes were included in the PheWAS, all 
with at least ten cases. We excluded pregnancy-related phecodes given the lack of 
appropriate controls for these phenotypes, and the phecode for “pain in joint” due to 
phenotypic inflation. We used a false discovery rate on all 10,729,992 phenotype-variant 
association tests to detect significant associations; all p-values were greater than the false 
discovery rate q<0.1. We also calculated a Bonferroni correction for an individual 
PheWAS (0.05/1,734=2.8x10-5) to analyze the PheWAS results for significant variants 
found in the discovery analysis. Using custom R scripts, we produced grid plots and 
PheWAS Manhattan plots for each significant variant found the discovery analysis. 
 
Severe endpoints of disease analysis 

We reviewed the Mendelian diseases for significant variants in the discovery 
analysis and determined that there were three severe outcomes associated with these 
diseases that could be ascertained using claims data. These outcomes included liver 
transplant (V42.7), kidney transplant (V42.0), and thyroidectomy (06.4). We defined 
cases for liver transplant and kidney transplant as having at least four relevant billing 
codes on unique dates, given that transplants require extensive preparation and follow-up. 
Controls were defined as individuals with zero relevant codes; all other individuals were 
excluded. For the thyroidectomy cases, we required cases have only one because 06.4 is a 
procedure code that is frequently only billed for on the date of the procedure. We 
ascertained case/control status for the entire discovery cohort. We matched severe 
outcomes to genes on the basis of the Mendelian disease associated with the gene: liver 
transplant with HFE; kidney transplant with AGXT, FAN1, and DGKE; and 
thyroidectomy with TG. We hypothesized that individuals were more likely to have one 
of these outcomes when they had a variant in a relevant gene compared with wildtype 
individuals. We only analyzed variants found in our discovery analysis. P-values 
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comparing individuals with the rare allele versus background for outcomes were 
generated using a Fisher’s exact one-sided text. (Table S4)  

 
Replicating associations found in discovery analysis 

We attempted to replicate our significant associations in two cohorts: a cohort of 
9,441 adults of European ancestry from Marshfield Clinic, and a cohort of 3,820 adults of 
non-European ancestry from Vanderbilt. We only attempted replication when there were 
at least ten individuals who were heterozygous or homozygous for the target variant, as 
we had in the discovery cohort. This criterion was met for two variants in the Marshfield 
cohort (rs142698837 and rs150393409) and three variants in the non-European 
Vanderbilt cohort (rs116297894, rs13408961, and rs150393409). (Table S5 provides 
counts and summary statistic for variants for all significant associations found in the 
discovery cohort.) 

 
Comparison of results to existing methods of determining pathogenicity 

We tested whether the SNP type was correlated with functional categories (stop-
gain, splice donor/acceptor, missense, splice region synonymous, intron/UTR) as 
determined by VEP using the Ensembl canonical transcript. For this test, we added 
results for variants that were non-exonic. These SNPs were not included in our reported 
results set but were useful as a comparison to the coding variants that were included. We 
filtered this expanded set of results by a nominal p<0.05 and created a boxplot of the 
betas categorized by functional type and grouped by Ensembl’s impact rating. We 
conducted a pairwise comparison of the distribution of betas using the Wilcox rank-sum 
test. 

We used ANNOVAR(37) to annotate the variants tested in the discovery analysis 
(version downloaded 2015-06-17). To test if our results aligned with functional 
predictions from various sources, we categorized the variants tested in the discovery 
cohort as significant (q<0.1), marginally significant (uncorrected p<0.05), and non-
significant (p>0.05). We considered the variants from our significant results to be 
predicted as “deleterious” and the variants that were non-significant to be “tolerated.” We 
used Fisher’s exact to compare the annotations derived from our result set to 14 
annotations. Categorical predictions (e.g. “Deleterious” versus “Tolerated) were available 
in ANNOVAR for 10 of these annotation databases. For the remaining four, we labeled 
the top quartile scores as deleterious (See Table S17 for details on annotations from 
ANNOVAR). 

 
Statistical methods 

Statistical analyses were conducted using Plink v1.90b3y(38) and R version 3.2.1 
(http://www.r-project.org/). A linear regression with age and sex as covariates was 
performed for both the discovery and replication cohorts. All tests of significance used a 
dominant genetic model and assumed a two-tailed distribution. For the discovery cohort 
as well as the PheWAS analysis, the false discovery rate (FDR) was calculated using the 
Benjamini and Hochberg method. Significance was determined by an FDR of q<0.1. We 
found 18 associations with q<0.1 for 17 unique variants in our discovery set. Adding the 
first three principle components to the linear model did not significantly impact the 
results overall, and the same 18 associations remained q<0.1. Three variants were 
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available in the Marshfield cohort for replication and three in the non-European cohort. 
We used p<0.05 to define replication in these cohorts. 
 
Calculating residual PheRS 

We developed a means to assign each individual a PheRS score that could be 
compared between individuals and across diseases. In the discovery cohort, we 
characterized the burden of various phenotypes in groups of individuals by calculating 
the deviance residuals from the same regression models used in the primary analysis, but 
without the genotype in the model. Calculated this way, the “residual PheRS” (rPheRS) 
corresponds to how much an individual’s PheRS deviates from what is predicted, given 
their sex and age. The rPheRS for person i is calculated as: 

 
rPheRS i = PheRSi - E(PheRS) 

 
Where E(PheRS | X) is estimated by the regression model PheRS ~ AGE + SEX 

(i.e., without genetics). We then represented each rPheRS by its deviation from the mean 
by standard deviation (z-score). While the magnitude of the PheRS and rPheRS is 
dependent on the number and rarity of symptoms for a particular disease, the z-score 
allows for comparison of PheRS across different diseases. 

 
Whole exome sequencing sample selection 

We undertook whole exome sequencing (WES) on a subset of individuals with 
significant variant from the discovery analysis. Our goals were to (1) confirm the variant 
call made with the Exome BeadChip, (2) identify variants in linkage disequilibrium with 
the target variant, and (3) identify other exonic or intronic variants which may be related 
to the disease phenotype. We restricted our analysis to the targeted genes of interest from 
the discovery analysis. 

In the discovery phase of our analysis, we found 18 statistically significant 
associations with variants from 16 genes. In total, 1,401 individuals were either 
homozygous or heterozygous for the rare allele for a variant in Table 1 (807 from the 
discovery cohort and 594 from the VUMC replication cohort). 80% of these samples had 
DNA available for sequencing. We selected half of the genes with significant variants for 
WES: AGXT, CHRNA4, DGKE, PLCG2, SH2B3, SPTBN2, SUOX, and TG. These genes 
were selected by a group of researchers and clinicians on the basis of sample availability, 
lack of prior literature evidence, and clinical importance. Three of the genes had 
dominant inheritance patterns (CHRNA4, SH2B3, and PLCG2), and five had recessive 
inheritance patterns. 

For six of the eight genes, the number of heterozygotes and homozygotes for the 
rare variant was small enough that we sequenced all available samples, including 
individuals with elevated and non-elevated PheRS. We also included the individuals from 
non-European cohort when available. Because there were many individuals with variants 
in AGXT and TG, we selected a sample of symptomatic (PheRS greater than the expected 
value) and asymptomatic individuals (PheRS less than or equal to expected value) for 
both European and non-European cohorts. For AGXT, we also included the single 
homozygous individual in the European cohort and three homozygous individuals from 
the non-European cohort. In all, we selected 132 samples for sequencing. 
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WES variant calling and quality control (QC) 

Of the 132 samples we attempted to WES, 13 samples failed at various points along 
the pipeline. Nine had insufficient samples for sequencing, including the individuals with 
the highest PheRS for spinocerebellar ataxia and sulfocysteinuria. Thus we cannot 
exclude the possibility that the most symptomatic individuals with these variants also 
harbor additional second variants (as we found for DGKE, AGXT, PLCG2, and CFTR). 
An additional four samples failed to sequence. The remaining 119 samples were 
processed using the GATK pipeline.(39) 

We carried out variant calling following best-practice procedures implemented in an 
in-house pipeline. We mapped raw paired-end reads to the reference human genome 
GRCh37 using BWA-0.7.4(40) with default settings, masked duplicates using picard-
tools-1.92 (http://broadinstitute.github.io/picard/), and re-calibrated base quality scores 
using GATK-3.7-0(41). We then used the GATK HaplotypeCaller for joint variant 
calling across all 119 samples. We calibrated variant quality scores using VQSR and 
filtered out low-quality variants with VQSR<99.0. 

Concordance between the variants called on the Exome BeadChip and WES was 
calculated using Plink. Before checking concordance, we filtered out variants that were 
monomorphic according to WES as well as variants with a missingness > 5%. The 
overall genotypic concordance rate for 42,077 variants was 99.9%. We also calculated 
the non-reference concordance with Plink and an in-house Perl script. For the 91,728 
non-reference calls made by WES, the concordance rate with the Exome BeadChip was 
99.1%. We calculated a non-reference concordance rate per individual and excluded three 
individuals with concordance < 95%.  

We further checked the concordance rate for between the Exome BeadChip and 
WES for the variants in the target genes (Table S8). All variants except AGXT and 
CHRNA4 had a concordance of 100%. Two individuals called as heterozygous for the 
rare variant in AGXT on the Exome BeadChip had discordant calls by WES (homozygous 
and no-call), and were excluded from subsequent analyses. The 17 individuals sequenced 
for the CHRNA4 variant were excluded from subsequent analysis due to the variant’s 
high missingness rate in WES and low concordance with the Exome BeadChip (this 
region may be difficult to cover by short read sequencing as it is also had low coverage in 
ExAC). We also excluded one AGXT heterozygote with a no call at the target variant. 
After exclusions based on the concordance QC step, we had 97 WES samples remaining 
in our analysis, 84 of which were from the discovery cohort. 

 
WES variant curation 

After VCF files were produced, all variants found in the eight genes of interest were 
annotated using ANNOVAR and VEP. Variants were curated in terms of their functional 
impact and ExAC allele frequencies. Clinical significance was retrieved from ClinVar. 
Variants in the 5' or 3' UTR regions which were covered by the sequencing were curated 
as well. Variants were labeled “of interest” if they were of moderate or high impact 
(missense, stop gain, or splicing donor/acceptor) and rare (Filtering MAF of < 1% in 
ExAC). 

We found 45 variants in the target genes, not including the target variants. Five of 
these were rare variants. 36 variants were listed in ClinVar, with 34 of these variants 
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specified as benign or likely benign and two specified as “uncertain significance.” The 
benign/likely benign variants all had filtering MAF > 1% in ExAC. 

Three variants were assessed as “of interest” given our criteria of being high impact 
(nonsynonymous) and having a filtering MAF of < 1% in ExAC. One of these variants, 
rs151185188 (p.R381K), was a missense variant in AGXT with a filtering MAF of 0.12% 
in ExAC. This variant is in ClinVar as “uncertain significance.” SIFT and Polyphen 
assess this variant as benign and tolerated, respectively. Two rare, nonsynonymous 
variants were found in PLCG2: rs72824905 is a missense variant (p.P522R) with a 
filtering MAF of 0.76% which is predicted to be benign/tolerated by SIFT and Polyphen. 
The other is 16:81953095 (p.R687S), a missense variant that is not found in ExAC and 
does not have an rsID number. This variant was predicted to be deleterious by SIFT and 
tolerated by Polyphen.  

The more common of these PLCG2 variants, rs72824905 (p.P522R), was found in 
every individual with the discovery variant (p.I251V) as well as others without elevated 
PheRS. p.P522R was genotyped on the Exome BeadChip and was not associated with the 
PheRS (linear regression adjusted for age and sex; p=0.23; p=0.54 excluding p.I251V 
heterozygotes). Based on this evidence, p.P522R was excluded as a variant of interest. 

The remaining two variants of interest both occur in the most highly symptomatic 
individuals for their respective diseases (among those who carry at least one copy of the 
variant). The heterozygote for the PLCG2 variant that was discovered through WES 
(p.R687S) had a z-score of 5.0, which is 2.5 S.D. higher than the next highest scorer 
among the ten heterozygotes for the variant in the discovery analysis (p.I251V). The 
individual with rs151185188 (p.R381K), the rare nonsense variant in AGXT found 
through WES, had a z-score of 6.0 and was again the highest scorer among the 36 
European ancestry individuals with p.A295T, the next highest scorer in that set having a 
z-score 2.2 S.D. lower than this. Due to the rarity of many alleles observed in sequencing, 
correct assignment of alleles to haplotypes by statistical phasing algorithms is difficult. 
Consequently, we cannot definitively establish with those methods that the individuals 
with second variants in AGXT and PLCG2 are compound heterozygotes. However, since 
the alleles are rare, the likelihood is that the two alleles are not in cis on the same 
chromosome because randomly occurring mutations are much more likely to impact 
different haplotypes than the same haplotype. 

When available, we sequenced individuals from our non-European cohort to detect 
variant linkages not present in the European ancestry individuals. We did not find any 
additional rare, non-synonymous variants in the 13 individuals from the non-European 
cohort that we selected for WES (nine for AGXT, two for TG and two for SH2B3). 

 
Selection of SH2B3, TG, and SUOX associations for biologic validation 

After reviewing the novel associations for potential biologic validation, we selected 
three candidates that had local scientific interest and for which we could identify 
validation methods. These were the only variants we tested for in vitro validation. These 
methods are described below. 

 
SH2B3 Materials and DNA plasmids 

Antibodies were obtained from Santa Cruz Biotechnology (EPOR polyclonal M-20), 
Cell Signaling Technology (JAK2, GAPDH, and phospho-ERK 1/2), and Invitrogen 
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(anti-V5). V5 epitope-tagged constructs pcDNA3.1-SH2B3 (WT) and pcDNA3.1-
SH2B3-R392E were kindly provided by Dr. Linyi Chen (National Tsing Hua University, 
Taiwan). pcDNA3.1-SH2B3-E395K was generated by site-directed mutagenesis, and the 
sequence of the entire insert was verified by Sanger sequencing. pRc/CMV-EPOR and 
pcDNA3 DNA constructs were generated as previously described.(42) 

 
SH2B3 cell transfection, EPO stimulation and Western blot analysis 

Subconfluent HEK293T cells were co-transfected with pRc/CMV-EPOR (0.29 ug) 
and pcDNA3-JAK2 (0.57 ug), and either pcDNA3.1-SH2B3-WT, pcDNA3.1-SH2B3-
R392E, pcDNA3.1-SH2B3-E395K, or empty pcDNA3.1 vector (1.14 ug) using FuGENE 
6 transfection reagent (Promega). After 48 h, cells were serum-starved for 4 h and then 
treated with 20 units/mL EPO (Amgen) for the indicated times. A time-course indicated 
that maximum levels of pERK were observed at ten minutes (Fig. S20). Stimulation was 
stopped by a cold phosphate-buffered saline wash, followed by protein extraction in SDS 
sample buffer. Equal amounts of protein were separated by 10% SDS-PAGE and 
transferred to PVDF membranes, which were probed with the indicated primary 
antibodies followed by HRP-conjugated secondary antibodies. ECL signals were detected 
and quantified using the FluorChemâ SP imaging system from Alpha Innotech. Mean 
band intensities were compared using an unpaired two-tailed t-test, and represent the 
results of 4 independent experiments. Results were consistent whether pERK levels were 
normalized to EPOR, SH2B3, or GAPDH levels. 

 
Splicing predictions for SUOX and TG variants 

In silico splicing analysis was performed on all PheRS-identified variants except for 
CFTR using Human Splicing Finder (HSF) 3.0 and MaxEntScan prediction algorithms 
accessed on the following website (http://www.umd.be/HSF3/), by entering gene name 
and variant cDNA change and position.(43) Interpreted results and raw data tables were 
examined. Both HSF and MaxEnt algorithms predicted that the SUOX variant would 
break the native 5' donor site, with a 17-19% decrease in splice donor strength. The TG 
variant showed a 58% or 198% increase in strength as an acceptor site relative to the 
wildtype sequence with HSF and MaxEnt algorithms, respectively. Although the strength 
of this cryptic acceptor is relatively weak compared to the native site (scores of 3.87 and 
9.4, MaxEnt), the MaxEnt algorithm did not predict any other 3' splice acceptor sites in 
this exon. SUOX and TG variants were selected for further investigation because of the 
concordance of HSF and MaxEnt predictions, and their potential to alter donor and 
acceptor splice sites. 

 
Evaluating the effect on SUOX and TG variants on splicing in vitro 

Wildtype and variant versions of SUOX exon 5 and TG exon 3 flanked by 100 bp of 
intron sequence were synthesized GenScript (Piscataway, NJ) and subcloned into 
minigene assay vector pET01 (MoBiTec GmbH, Göttingen, Germany) using SalI and 
XbaI restriction sites. Gene block sequences were derived from the following reference 
sequences: NM_000456.2, NM_003235.4, NG_008136.1, and NG_015832.1. Resulting 
constructs were sequence-verified and transiently transfected into HEK293T cells using 
the calcium-phosphate method. RNA was extracted 50 hours after transfection using the 
RNeasy mini kit (Qiagen), and first-strand cDNA synthesis was performed using 3.0 ug 
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of RNA in the SuperScriptâ III System (ThermoFisher). cDNA was diluted 10-fold and 
used in a touch-down PCR reaction containing primers specific to small exons within the 
pET01 vector, ETPR04, and ETPR05 (MoBiTec). Expected product sizes of fragments 
including the exon of interest (exon-included) were 250 bp for SUOX and 170 bp for TG; 
the fragment containing exons derived from the parent construct alone (exon-skipped) 
was 72 bp. Cells transfected with an unrelated expression plasmid, pIRES2-EGFP, were 
used as a negative control. PCR products were gel extracted and Sanger sequenced to 
identify which splice i soform they represented. Images were acquired using Bio-Rad’s 
Quantity Oneâ software and analyzed using ImageJ1 software.(44) An empirically-
derived correction factor for normalizing band intensity to molecular mass was obtained 
by running experiment samples alongside a standard (Low DNA Mass Ladder, 
ThermoFisher). Corrected intensity values for each band were expressed as percent of the 
total intensity within each gel lane; results represent mean percent ± SEM from 5 
independent experiments. P values from an unpaired two-tailed t test are reported. 

 
Interpretation of variants using ACMG guidelines 

We interpreted the variants in Table 1 according to ACMG guidelines(32). We used 
ExAC for minor allele frequencies and counts for heterozygotes and homozygotes.(13) 
For PP3 and BP4 evidence, we used REVEL scores exceeding 0.52 (specificity > 0.90) or 
below 0.26 (sensitivity > 0.90), respectively.(11) For PP2 evidence, we used ExAC 
constraint scores, considering z-scores >= 3.09 as evidence of a low rate of missense 
variation (applied only to variants in genes for which missense variation is a known 
mechanism of disease). We used the rules for combining criteria to classify variants 
based on existing evidence. We then added the evidence from this paper, assigning PS4 
criteria to the statistically significant variants from Table 1, and PS3 evidence from the in 
vitro experiments (Table S9). In total, we changed the status of seven variants: three were 
changed from uncertain to pathogenic, two from likely benign to uncertain, one from 
uncertain to likely pathogenic, and one from likely pathogenic to pathogenic. 



 
 

13 
 

Fig. S1: Disease burden of novel associations identified in this study. 
Bar chart of the number of individuals who are both carriers of a variant and have the 
phenotype of the diseases reported in the significant results table. Phenotypes pertaining 
to symptoms (e.g. Fatigue) were pruned from the chart, as well as those 
phenotype/variant pairs that did not show enrichment. The CFTR variants were also 
excluded because the individuals had all been diagnosed with cystic fibrosis. None of the 
individuals represented in this chart have been diagnosed with the corresponding 
Mendelian disease. Left panel: Each circle represents an individual who both carries the 
novel variant and has that phenotype, each part of an associated Mendelian disease. 
Solid-filled circles represent individuals with disease beyond expected by random 
chance. Right panel: The bars on the right panel represent the population attributable 
fraction for each variant/phenotype pair.  
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Fig. S2-17: Phenotype grids and PheWAS plots for significant variants identified in 
the discovery analysis.  
For phenotype grids S2A-S17A, each column represents an individual in the discovery 
cohort who is heterozygous or homozygous for the specified variant; each row represents 
a feature of the Mendelian disease. Black squares indicate an individual has the phecode 
specified in the row label. The bar to the left of the grid indicates the relative risk of the 
phenotype among those displayed in the grid compared with wildtype individuals. The 
grid for S5A cannot be displayed due to the large number of heterozygotes. Figures S2B-
S17B show PheWAS plots for each variant. A point represents a single association test 
for a phenotype. The y-axis indicates the –log(P) from the association using Fisher’s 
exact test. The constituent phenotypes that define the PheRS are starred. Constituent 
phenotypes as well as those with p<0.001 are labeled. The horizontal red and blue lines 
show the Bonferroni correction threshold for an individual PheWAS and the nominal 
(uncorrected) p=0.05, respectively.  
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Fig. S2: Phenotype grid and PheWAS plot for Primary Type 1 Hyperoxaluria - 
rs13408961 (AGXT, p.A295T) Supplemental Figure 2: Primary Type 1 Hyperoxaluria -
rs13408961 (p.A295T in AGXT)

A

B



 
 

16 
 

Fig. S3: Phenotype grid and PheWAS plot for Cystic Fibrosis - rs74597325 (CFTR, 
p.R553*) Supplemental Figure 3: Cystic Fibrosis - rs74597325 
(p.R553* in CFTR)
A

B
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Fig. S4: Phenotype grid and PheWAS plot for Nocturnal frontal lobe epilepsy - 
rs55855125 (CHRNA4, p.R483Q 
Supplemental Figure 4: Nocturnal frontal lobe epilepsy –
rs55855125 (R307Q,R483Q on CHRNA4)
A

B
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Fig. S5: Phenotype grid and PheWAS plot for Factor X deficiency – rs149212700 
(F10, p.R291Q) 
Supplemental Figure 5: Factor X deficiency – rs149212700 
(R291Q on F10)

A

B
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Fig. S6: Phenotype grid and PheWAS plot for Interstitial nephritis, karyomegalic – 
rs150393409 (FAN1, p.R507H) 
 
Supplemental Figure 6: Interstitial nephritis, karyomegalic –
rs150393409 (R507H on FAN1)
A

Grid not available due to large number of carriers

B
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Fig. S7: Phenotype grid and PheWAS plot for Hemochromatosis - rs146519482 
(HFE, p.E168Q) 

 Supplemental Figure 7: Hemochromatosis - rs146519482 
(E168Q on HFE)
A

B
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Fig. S8: Phenotype grid and PheWAS plot for Spastic paraplegia 30 – rs116297894 
(KIF1A, p.A993A) 

Supplemental Figure 8: Spastic paraplegia 30, autosomal 
recessive – rs116297894	(A892A,A993A on KIF1A)

A

B
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Fig. S9: Phenotype grid and PheWAS plot for Charcot-Marie-Tooth disease, type 
2A1 – rs41274468 (KIF1B, p.T674I) 

Supplemental Figure 9: Charcot-Marie-Tooth disease, type 
2A1 – rs41274468 (T674I on KIF1B)

A

B
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Fig. S10: Phenotype grid and PheWAS plot for Hypoprebetalipoproteinemia, 
acanthocytosis, retinitis pigmentosa, & pallidal degeneration – rs137852959 
(PANK2, p.G521R) 

 

Supplemental Figure 10: Hypoprebetalipoproteinemia, 
acanthocytosis, retinitis pigmentosa,& pallidal degeneration –
rs137852959 (G230R,G521R on PANK2)

A

B
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Fig. S11: Phenotype grid and PheWAS plot for Familial cold autoinflammatory 
syndrome 3 – rs190840748 (PLCG2, p.I251V) 

Supplemental Figure 11: Familial cold autoinflammatory 
syndrome 3 – rs190840748 (I251V on PLCG2)

A

B
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Fig. S12: Phenotype grid and PheWAS plot for Familial erythrocytosis – 
rs148636776 (SH2B3, p.E395K) Supplemental Figure 12: Familial erythrocytosis –
rs148636776 (E395K on SH2B3)
A

B
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Fig. S13: Phenotype grid and PheWAS plot for Essential thrombocythemia – 
rs148636776 (SH2B3, p.395K) 

Supplemental Figure 13: Essential thrombocythemia –
rs148636776 (E395K on SH2B3)

A

B
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Fig. S14: Phenotype grid and PheWAS plot for Sulfocysteinuria – rs202085145 
(SUOX, p.R76S) 

Supplemental Figure 14: Sulfocysteinuria – rs202085145 
(R76S on SUOX)

A

B
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Fig. S15: Phenotype grid and PheWAS plot for Spinocerebellar ataxia, autosomal 
recessive 14 – rs145522851 (SPTBN2, p.R2370H) 

Supplemental Figure 15: Spinocerebellar ataxia, autosomal 
recessive 14 – rs145522851 (R2370H on SPTBN2)

A

B
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Fig. S16: Phenotype grid and PheWAS plot for Thyroid dyshormonogenesis – 
rs142698837 (TG, p.G77S) 

Supplemental Figure 16: Thyroid hormonogenesis –
rs142698837 (G77S on TG)

A

B

…

…
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Fig. S17: Phenotype grid and PheWAS plot for Von Willebrand disease – 
rs144072210 (VWF, p.T1951A) 

Supplemental Figure 17: Von Willebrand disease –
rs144072210 (T1951A on VWF)

A

B
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Fig. S18: Disease burden of novel associations identified in this study. 
Each point represents and individual who is heterozygous or homozygous for a 
significant variant from the discovery analysis. The x-axis shows the z-score for residual 
from the PheRS for the disease paired with the variant label to the left; the established 
inheritance mode is in parentheses and mean z-scores for variant carriers are under gene 
label. PheRS is tested by linear regression assuming a dominant model adjusted for age 
and sex. Individuals in the WES analysis are triangles; all others are circles. Findings 
from chart review and WES are labeled. Homozygotes confirmed with WES are labeled 
HOM. 
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Fig. S19: PheRS associations based on variant function and predicted pathogenicity. 
(A) Boxplots of effect size (beta) for various types of variants. Only variants of nominal 
significance in the discovery analysis (p<0.05) are included. Consequences were derived 
from the Ensembl canonical transcript using VEP, and are ordered by the impact rating 
provided by Ensembl. Pairwise statistical significance between variants of different 
impact was evaluated by Wilcoxon rank-sum test. (B) Relationship between statistical 
significance of association with the relevant PheRS and predicted effect of variant 
according to various computational methods. We compared our classification of 
“significant” “non-significant” with predictions from a variety of source, using Fisher’s 
exact. The plot displays the variants that were “weakly significant,” though the p-values 
were generated by comparing “significant” with “non-significant” associations. 
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Fig. S20: Timecourse of ERK activation. 
Western blot of HEK293T cells transiently transfected with wildtype (WT) versus variant 
SH2B3 constructs, EPOR, and JAK2 or empty vector. Cells were stimulated with 
erythropoietin (EPO) for the times indicated at top, and western blotting was performed 
with the antibodies indicated at left.  
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Table S1: Demographic summary for three cohorts. 
Ancestry was determined by genetics. Age is the age at last visit available in the EHR. 
Years recorded is calculated as the age at last visit minus the age at first, plus one.  
 

Site Ancestry cohort size %male median age median yrs. recorded 
Vanderbilt European 21,701 44% 64 11 

Marshfield Clinic European 9,441 41% 61 36 
Vanderbilt Non-European 3,820 36% 56 12 

 
Ascertainment variables for BioVU cohorts. The BioVU cohorts were ascertained for 
five different purposes. The largest portion of samples were genotyped for a variety of 
drug side-effect and/or efficacy studies. Two cohorts were ascertained based on rich EHR 
data: longitudinal and elderly. Another group was ascertained based on the presence of 
their samples from the tumor registry. Finally, a set of individuals were ascertained 
because they had a rare disease or condition as determined by billing codes. 
 

Set BioVU discovery cohort BioVU replication cohort 
pharmacogenomic studies 5,559 (26%) 1,175 (31%) 

longitudinal 4,444 (20%) 9,17 (24%) 
cancer registry 4,436 (20%) 6,38 (17%) 

elderly 4,030 (19%) 4,81 (13%) 
rare 3,232 (15%) 6,09 (16%) 
ALL 21,701 3,820 

 
EHR Race for BioVU non-European cohort.  
 
EHR Race  Count 
Black 2,684 
White 490 
Asian 339 
Unknown 272 
Indian American 30 
Pacific Island 5 
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Table S2: Manual review of CFTR carriers. 
Manual chart review revealed that 7 of 40 individuals with one or two copies of the rare 
variant G542* or R553* were clinically diagnosed with cystic fibrosis. All of the 
diagnosed individuals had genetic testing as part of their clinical care. Five were found to 
carry the ΔF508 mutation in addition to G542* or R533*, making them compound 
heterozygotes. Another was homozygous for G542*. A final individual was confirmed as 
a heterozygote for G542*, but a second variant was not identified via targeted genotyping 
and he passed away before higher resolution testing was conducted. The remaining 32 
variant carriers had no clinical diagnosis of CF or relevant clinical genetic testing. 
Genetic clinical testing for CFTR was fully concordant with genotyping from the Exome 
BeadChip. 
 
rs74597325 (R553*) 	
Subj. sex-

age CF dx? PheRS z-score 
Genetics from Exome 

BeadChip 
Genetics (from clinical 

testing) 
F-29 Y 12.24 8.61 p.R553* heterozygote ΔF508/R553* 

M-19 Y 9.28 6.44 p.R553* heterozygote ΔF508/R553* 

F-27 Y 6.73 4.45 p.R553* heterozygote ΔF508/R553* 

 
rs113993959 (G542*)  

Subj. sex-
age CF dx? CF PheRS z-score 

Genetics from Exome 
BeadChip 

Genetics (from clinical 
testing) 

M-18 Y 16.03 11.6 p.G542* heterozygote Unknown/G542* 

F-21 Y 9.52 6.58 p.G542* homozygote G542*/G542* 

F-20 Y 8.61 5.90 p.G542* heterozygote ΔF508/G542* 

F-24 Y 8.58 8.58 p.G542* heterozygote ΔF508/G542* 
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Table S3: Severe outcomes associated with variants. 
Associations between variants from the discovery analysis and three outcomes were 
tested using a one-tailed Fisher’s exact test. Genes that were matched with outcomes are 
highlighted in yellow. The three outcome/gene pairs that yielded a p<0.05 are starred.  

 
		 		 Kidney	transplant	 Liver	transplant	 Thyroidectomy	
Gene	 Variant	 Odds	ratio	 P	 Odds	ratio	 P	 Odds	ratio	 P	
AGXT	 p.A295T	 4.58	 6.9x10-3*	 2.25	 0.37	 0.00	 1.00	
CFTR	 p.G542*	 1.65	 0.35	 0.00	 1.00	 0.00	 1.00	

CHRNA4	 p.R483Q	 0.00	 1.00	 0.00	 1.00	 2.57	 0.33	
DGKE	 p.W322*	 4.40	 0.09	 0.00	 1.00	 0.00	 1.00	
F10	 p.R291Q	 0.00	 1.00	 0.00	 1.00	 3.77	 0.24	
FAN1	 p.R507H	 0.99	 0.56	 1.31	 0.30	 0.78	 0.77	
HFE	 p.E168Q	 0.00	 1.00	 8.10	 2.1x10-3*	 1.42	 0.51	
KIF1A	 p.A993A	 2.54	 0.20	 3.11	 0.28	 2.18	 0.38	
KIF1B	 p.T674I	 0.00	 1.00	 3.86	 0.24	 0.00	 1.00	
PANK2	 p.G521R	 3.81	 0.05	 0.00	 1.00	 0.00	 1.00	
PLCG2	 p.I251V	 0.00	 1.00	 8.10	 0.13	 5.66	 0.18	
SH2B3	 p.E395K	 3.00	 0.16	 3.68	 0.25	 2.57	 0.33	
SPTBN2	 p.R2370H	 0.00	 1.00	 0.00	 1.00	 0.00	 1.00	
SUOX	 p.R76S	 0.00	 1.00	 0.00	 1.00	 0.00	 1.00	
TG	 p.G77S	 1.44	 0.36	 2.35	 0.22	 3.28	 0.04*	
VWF	 p.T1951A	 3.14	 0.15	 0.00	 1.00	 5.39	 0.06	
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Additional Data table S4-S17 are provided in a separate excel file: 
 
Table S4: Demographics of variant carriers in discovery and replication cohorts. 
 
Table S5: Mean PheRS for carriers, heterozygotes, and homozygotes in discovery 
and replication cohorts. 
 
Table S6: Results from replication analysis of novel genetic associations in two 
independent cohorts. 
 
Table S7: Whole exome sequencing sample selection and QC information. 
 
Table S8: Summary of variants identified in WES analysis. 
 
Table S9: Complete report of variants found in WES. 
 
Table S10: Variants from discovery analysis reinterpreted using ACMG guidelines 
with evidence from this study. 
 
Table S11: Treatments available for PheRS-associated Mendelian diseases. 
 
Table S12: HPO to phecode map. 
 
Table S13: Phecode frequencies and weights for discovery and replication cohorts. 
 
Table S14: Description of Mendelian diseases tested in discovery analysis. 
 
Table S15: Description variants tested in discovery analysis. 
 
Table S16: Statistical results from PheRS analysis in discovery cohort. 
 
Table S17: ANNOVAR annotations and categorical predictions. 
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