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SUMMARY

While meta-analysis has demonstrated increased
statistical power and more robust estimations in
studies, the application of this commonly accepted
methodology to cytometry data has been chal-
lenging. Different cytometry studies often involve
diverse sets of markers. Moreover, the detected
values of the same marker are inconsistent between
studies due to different experimental designs and cy-
tometer configurations. As a result, the cell subsets
identified by existing auto-gating methods cannot
be directly compared across studies. We developed
MetaCyto for automated meta-analysis of both flow
and mass cytometry (CyTOF) data. By combining
clustering methods with a silhouette scanning
method, MetaCyto is able to identify commonly
labeled cell subsets across studies, thus enabling
meta-analysis. Applying MetaCyto across a set of
ten heterogeneous cytometry studies totaling 2,926
samples enabled us to identify multiple cell popula-
tions exhibiting differences in abundance between
demographic groups. Software is released to the
public through Bioconductor (http://bioconductor.
org/packages/release/bioc/html/MetaCyto.html).

INTRODUCTION

Meta-analysis of existing data across different studies offers

multiple benefits. The aggregated data allow researchers to

test hypotheses with increased statistical power. The involve-

ment of multiple independent studies increases the robustness

of conclusions drawn. In addition, the complexity of aggregated
Cell
This is an open access article under the CC BY-N
data allows researchers to test or generate new hypotheses.

These benefits have been shown by many studies in areas

such as genomics, cancer biology, and clinical research, and

have led to important new biomedical findings (Boulé et al.,

2001; Kodama et al., 2012; Sutton et al., 2000; Wirapati et al.,

2008). For example, one study showed the correlation between

neo-antigen abundance in tumors and patient survival by per-

formingmeta-analysis of RNA sequencing data from The Cancer

Genome Atlas (TCGA) (Brown et al., 2014). In another study,

meta-analysis of genome-wide association studies identified

novel loci that affect the risk of type 1 diabetes (Barrett et al.,

2009).

With the recent advances in high-throughput cytometry tech-

nologies, the immune system can be characterized at the single-

cell level with up to 45 parameters, minimizing the technical

limitations and allowing capture of more valuable information

from immunology studies (Bandura et al., 2009; Perfetto et al.,

2004; Shapiro, 1983). Open science initiatives have led to

more of this type of research data being accessible, and

the availability of shared cytometry data, including data from

flow cytometry and mass cytometry (CyTOF), is growing expo-

nentially. Notably, the ImmPort database (http://www.immport.

org/immport-open/public/home/home), a repository for immu-

nology-related research and clinical trials, provides numerous

studies with thousands of cytometry datasets (Bhattacharya

et al., 2014). However, meta-analysis of cytometry datasets re-

mains particularly challenging. Different studies use diverse

sets of protein markers and fluorophore/isotope combinations.

The detected values of the same marker are inconsistent be-

tween studies because of different cytometer configurations or

operators. In addition, the high dimensionality of cytometry

data, especially CyTOF data, makes manual gating-based

meta-analysis difficult and time-consuming.

Multiple computational methods have been proposed to

automate the analysis of cytometry data, such as FlowSOM
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(Van Gassen et al., 2015), FlowMeans (Aghaeepour et al., 2011),

and CITRUS (Bruggner et al., 2014). Although they are effective

in analyzing data from a single study (Aghaeepour et al., 2013;

Weber and Robinson, 2016), several limitations have prevented

their use in meta-analysis. First, the results of these methods

cannot be directly compared across studies. The cell subsets

identified by these methods are usually labeled with anony-

mous identifiers with no cell-specific annotation, making it

impossible to identify common cell populations across different

studies. In addition, many clustering methods are sensitive to

parameter choices. For example, FlowSOM, FlowMeans, and

SPADE (Qiu et al., 2011) require users to pre-specify the num-

ber of clusters. As a result, extensive parameter tuning and

manual inspection are required for every cytometry dataset. In

meta-analysis where large numbers of input datasets could

be involved, these manual selected choices become a major

technical burden.

In this study, we developed MetaCyto to enable automated

meta-analysis of cytometry datasets, including data from both

conventional flow and CyTOF cytometry data. MetaCyto is

able to accurately identify common cell populations across

studies without parameter tuning requirements. It then applies

hierarchical models to robustly estimate the effects of factors

of interest, such as age, ethnicity, or vaccination, on the cell pop-

ulations using data across all input studies.

To test the utility of MetaCyto, we performed a joint analysis of

ten human immunology cytometry datasets contributed by four

different institutions (Ledgerwood et al., 2012; Obermoser

et al., 2013; Wertheimer et al., 2014; Whiting et al., 2015). Alto-

gether, this analysis spanned 2,926 whole-blood or peripheral

blood mononuclear cell (PBMC) samples from 984 healthy sub-

jects, which were acquired using either flow cytometry or CyTOF

with a diverse set of markers. Among these 984 subjects, over

90%were white or Asian. While it is well known that characteris-

tics of multiple immune system-related diseases, such as HIV

(Achhra et al., 2010), systemic lupus erythematosus (Petri,

2002), and hepatitis C (Golden-Mason et al., 2008), vary between

the two ethnic groups, the heterogeneity of the immune system

among the human population has made studying these differ-

ences difficult (Brodin et al., 2015; Li et al., 2016). We hypothe-

sized that a meta-analysis approach could lead to a better un-

derstanding of differences in the immune system between

ethnic groups. Using MetaCyto, we not only confirmed a known

difference but also identified new cell types whose frequencies

differ between whites and Asians.

RESULTS

MetaCyto Identifies Common Cell Subsets across
Studies
Our meta-analysis of cytometry data follows four steps: data ag-

gregation, data pre-processing, identification of common cell

subsets across studies, and statistical analysis (Figure 1A). The

third step, identification of common cell subsets across studies,

has been one of the main technical challenges preventing

automated meta-analysis. Therefore, while all four steps are

automated and covered in the MetaCyto software system and

documented in the online methods, here we primarily focus on
1378 Cell Reports 24, 1377–1388, July 31, 2018
describing our identification and relating of common cell subsets

across studies.

MetaCyto employs two automated pipelines, unsupervised

analysis and guided analysis, to identify common cell subsets

across studies. The unsupervised analysis pipeline identifies

cell subsets in a fully automated way. Cytometry data in each

study is first clustered using an existing clustering method (Fig-

ure 1B, top). FlowSOM (Van Gassen et al., 2015) was imple-

mented as the default clustering method due to its speed and

performance. However, any other clustering method, such as hi-

erarchical clustering or FlowMeans, could be substituted aswell.

At this stage, clusters are labeled with non-informative labels,

such as C1, C2, and C3, which cannot be related across studies.

For example, C1 in study 1 and C1 in study 2 represent entirely

different cell populations.

A threshold is then chosen to bisect the distribution of each

marker into positive and negative regions, needed to label

each cluster in a biologically meaningful way (Figure 1B, middle).

The selection of a threshold is easy when a clear bi-modal distri-

bution is present but becomes challenging in other cases. We

implemented a silhouette scanning method, which bisects

each marker at the threshold maximizing the average silhouette,

a widely used way of describing the quality of clusters (Rous-

seeuw, 1987). We compared silhouette scanning against eight

other bisection methods and found it to be superior (Figure S1;

Table S1).

Clusters are then labeled for each of the markers based on

the following two rules: first, if the marker levels of 95% of

cells in the cluster are above or below the threshold, the clus-

ter will be labeled as positive or negative for the marker,

respectively. Otherwise, the cluster will not be labeled for

the marker. For example in Figure 1B, both C2 and C1 in study

2 will be labeled as CD8+ CD4�; second, if a marker is positive

or negative in 95% of all cells, the marker is not used to label

any clusters. For example, CD45, which is expressed by all

immune cells, will not be used to label any cell clusters in

the blood. The two rules are used to reduce redundancy

and ensure that only the informative markers are used for

labeling.

Next, clusters with the same labels are merged into a square-

shaped cluster (Figure 1B, bottom). In cytometry data with higher

dimensions, clusters are hyper-rectangles. Following this stage,

common cell subsets across studies can be rigorously identified

and annotated. For example, the CD4� CD8+ clusters in both

study 1 and study 2 correspond to CD8+ T cells.

The guided analysis pipeline identifies cell subsets using pre-

defined cell definitions, thus allowing for the search of specific

cell subsets defined by immunologists. After bisecting each

marker into positive and negative regions, cells fulfilling

the pre-defined cell definitions are identified. For example, the

CD3+ CD4+ CD8� (CD4+ T cells) cell subset corresponds to the

cells that fall into the CD3+ region, CD4+ region, and CD8� region

concurrently (Figure 1C). Notice that both CD45RA+ and

CD45RA� populations are included in the cell subset, because

the cell definition does not specify the requirement for CD45RA

expression. However, researchers could easily alter the cell defi-

nition to CD3+ CD4+ CD8� CD45RA+ to find the CD45RA+ cell

subset.
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Figure 1. MetaCyto Identifies and Labels Common Cell Subsets in Cytometry Data across Studies

(A) Schematic illustration of the four steps MetaCyto uses to perform meta-analysis of cytometry data.

(B) Schematic illustration of the unsupervised analysis pipeline in MetaCyto. Top: Cytometry data from different studies are first clustered using a clustering

method, such as FlowSOM. Middle: Each marker is bisected into positive and negative regions using the silhouette scanning method. Each identified cluster is

labeled based on their position relative to this threshold. Bottom: Clusters with the same label are merged together into rectangles or hyper-rectangles.

(C) An example illustrating the guided analysis pipeline in MetaCyto. Each marker in the data is bisected into positive and negative regions using the silhouette

scanning method. The CD3+ CD4+ CD8� cluster corresponds to cells that fall into CD3+ region, CD4+ region, and CD8� region at the same time. Red histograms

show the distribution of markers in CD3+ CD4+ CD8� subset. Gray histograms show the distribution of markers of all cells.
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Evaluating the Guided Analysis Pipeline
A successful meta-analysis of cytometry data requires cell pop-

ulations to be identified accurately from each study. To evaluate

whether the guided analysis pipeline of MetaCyto can accurately

identify cell subsets from a single study, we downloaded a set of

PBMC cytometry data (ImmPort: SDY478), with which the orig-

inal authors identified 88 cell types. Correspondingly, we speci-

fied the 88 cell definitions (Table S2) based on the author’s gating

strategy and identified these cell subsets for each cytometry

sample using the guided analysis pipeline in MetaCyto. We

compared the proportions of all cell subsets estimated by

MetaCyto with the original manual gating results and found that

MetaCyto estimations are highly consistent with the manual

gating result (Figures 2A–2C). We compared our estimations to

two existing methods, flowDensity (Malek et al., 2015) and

ACDC (Lee et al., 2017), which can also identify pre-defined cell

populations. Our results suggest that MetaCyto’s quantification

of both major and rare populations were more accurate than

FlowDensity’s (Figures 2D and 2E). Although ACDC and

MetaCyto results had the same correlation with manual gating,

ACDC tended to over-estimate the cell abundance (Figures

S2A and S2B). In addition, a relatively shorter computational

time of MetaCyto (around 3 min) compared to ACDC (over 2 hr)

makes it advantageous in analyzing a large number of datasets.

Evaluating the Unsupervised Analysis Pipeline
We then tested the performance of the unsupervised analysis

pipeline of MetaCyto. In the unsupervised analysis pipeline,

cell clusters are first identified by an existing clustering algo-

rithm. The subsets are then labeled using informative markers

and aremerged into hyper-rectangle clusters based on the label-

ing result (Figure 1B). To learn how such a merge affects the

quality of clusters, we evaluated the results of two clustering

algorithms, FlowSOM (Van Gassen et al., 2015) and FlowMeans

(Aghaeepour et al., 2011), with and without the merging step.

Multiple studies have been conducted to evaluate the perfor-

mance of existing clustering method for cytometry data

(Aghaeepour et al., 2013; Weber and Robinson, 2016). The

most recent (Weber and Robinson, 2016) compared 15 clus-

tering methods and found FlowSOM generally outperformed

other methods after manual tuning.

We downloaded an evaluation dataset, West Nile virus dataset

(FlowCAP WNV), used by Weber and Robinson (2016), and

applied FlowSOM. The clustering result is then labeled and

merged. Since FlowSOM requires a pre-specified cluster num-

ber (K), we didmultiple runs with K ranging from 10 to 90. F-mea-

sure is used to evaluate the quality of the clusters. We found that

the quality of clusters is comparable before and after merging

when K equals 10. However, the performance of FlowSOM

drops when K increases. The subsequent merging step pre-

vented FlowSOM performance to deteriorate (Figure 2F). We

then looked at the total number of clusters identified before

and after merging. As expected, FlowSOM identified the same

number of clusters specified by K. However, when running the

merging step after FlowSOM, the total number of clusters no

longer increases after a certain point (Figure 2G). The same re-

sults were obtained with FlowMeans (Aghaeepour et al., 2011)

(Figures S2C and S2D).
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To see whether such benefit of the merging step only exists

in datasets where the intrinsic number of cell subsets is small,

we applied the same methodology in the normal donor (ND) da-

taset from FlowCAP competition (Aghaeepour et al., 2013),

where more cell subsets can be identified. Consistent with

results from WNV dataset, the merging step is able to prevent

the over-partitioning in the ND dataset as well (Figures S2E

and S2F).

The results suggest that MetaCyto is able to merge small clus-

ters in a biologically meaningful way, preventing over-partition-

ing of the cell subsets, thus allowing the clustering analysis to

be performed without tuning any parameters.

Meta-analysis Using MetaCyto Confirms Previous
Findings
After evaluating the performance of MetaCyto in analyzing

cytometry data from single studies, we next tested the ability

of MetaCyto in yielding consistent results from combining

multiple studies. We applied MetaCyto to identify cell types

whose frequencies are different between age, gender, and

ethnic groups. We downloaded ten studies from ImmPort

containing cytometry data. These ten studies had been

contributed from four different institutions, where 86 panels

containing 74 different markers were used (Figure 3; Table

S3). Altogether, the datasets contain 2,926 whole-blood or

PBMC samples from 984 healthy subjects and were acquired

using either flow cytometry or CyTOF. We obtained the de-

mographic information, including age, gender, and ethnicity,

directly from the metadata associated with the studies. The

subjects are proportionately distributed by gender, with

slightly more females than males. The age span ranges

from 19 to 90 years. The subjects come from five different

defined ethnic groups. Among them, over 90% were white

or Asian (Figure S3).

We used both unsupervised and guided MetaCyto analysis

pipelines in parallel to identify cell subsets. For the latter, we

used23cell typedefinitions from theHuman ImmunoPhenotyping

Consortium (HIPC) (Finak et al., 2016), ranging fromeffectormem-

ory T cells to monocytes (Table S4). We then estimated the effect

sizeofage,gender, andethnicityon thecell typeproportionsusing

hierarchical statistical models.

Because the ten studies differ in multiple aspects, including

the sample size, the cytometry experimental design (Figure 3),

and the distribution of demographics (Figure S3), it is impor-

tant to determine whether results from these studies can be

combined in a meta-analysis. We first performed a ten-fold

leave-one-out analysis. Each time, we left one of the ten

studies out and estimated the effect sizes of age, gender,

and ethnicity using the rest of the nine studies. We found

that the leave-one-out analysis agree well with the full

meta-analysis (correlation ranges from 0.76 to 1; Table S5),

suggesting that the meta-analysis results are not dominated

by one study. In addition, we performed Cochran’s Q tests

on the results from ten studies. The tests did not identify sig-

nificant heterogeneity between studies (p values range from

0.22 to 1).

We then validated our results using the effect sizes of age and

gender, previously well characterized in other studies (Carr et al.,



Figure 2. Both Guided and Unsupervised Analysis Pipelines in MetaCyto Accurately Identify Cell Populations

(A–C) Scatterplots showing the comparison between proportions of cell types estimated by the guided analysis pipeline inMetaCyto and proportions provided by

the authors of SDY478. All cell populations (A), natural killer (NK) cells (B), and effector memory CD4+ T cells (C) are included in the plots. Each dot represents the

proportion of a cell type in a sample. Each color represents a cell type.

(D) Scatterplots showing the comparison between flowDensity and manual gating. All cell populations are included.

(E) The 88 cell types are broken down into rare and major populations based on their mean proportion in the manual gating results. The cell types whose mean

proportions are less than 2% are defined as rare population, and the rest of the cell types are defined as major populations. Spearman correlation between

MetaCyto or flowDensity’s results and manual gating results are calculated to measure the performance.

(F and G) FlowSOM is used to cluster the West Nile virus dataset (FlowCAP WNV) with K ranging from 10 to 90 with or without the merge step in MetaCyto

unsupervised analysis pipeline. F measure (F) and the number of clusters (G) are shown in the bar plots. See also Figure S2.
2016; Whiting et al., 2015). We tested whether results obtained

with MetaCyto could replicate results from a previous indepen-

dent study (Carr et al., 2016). Among the 23 cell types identified
by the guided analysis pipeline, 14 overlapped with the cell types

included in the Carr study. We compared the effect size of age

and gender on the proportion of these 14 cell types, between
Cell Reports 24, 1377–1388, July 31, 2018 1381
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Figure 3. Data from Ten Human Immunology Studies Includes Highly Heterogeneous Cytometry Panels

Eighty-six panels with diverse sets of markers were used in these ten studies, with the panels represented vertically. The specific markers used are represented

horizontally. Each panel is a unique antibody and fluorophores/isotope combination in a study. A red square in each grid element indicates that particular marker

was used in a panel.
MetaCyto on the ten studies, and the independent results from

Carr et al. We found that results agree well with each other on

both the effect size of age (r = 0.69, p = 0.006; Figure 4A) and

gender (r = 0.71, p = 0.004; Figure 4B). The result, together

with results from the leave-one-out analysis and Cochran’s Q

tests, suggest that data from the ten studies can be analyzed

together in a meta-analysis using MetaCyto.

The only discrepancy between our analysis and the Carr study

was the effect of age on CD8+ T cells (Figure 4A). Our result

showed that the proportion of CD8+ T cells significantly de-
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creases with age, while the Carr study reported an increase

with age. We visually inspected MetaCyto’s auto-gating and

ruled out such disagreement being caused by gating errors in

our study (Figure 4C). The forest plot showed that our finding

was consistent across cytometry panels (Figure 4D). In the liter-

ature, one study found that CD8+ T cell proportion decreases

with age (Yan et al., 2010), while another study found no associ-

ation between CD8+ T cells and age (Uppal et al., 2003). These

discrepancies suggest that the effect of age on CD8+ T cells is

highly variable and environment-specific factors might be



Figure 4. Meta-analysis Using MetaCyto Pro-

vides Consistent Results between Cytometry

Panels and Confirms Previous Findings

(A and B) Comparison between the effect sizes of

age (A) and gender (B) estimated by MetaCyto using

all 86 panels, against the effect sizes estimated us-

ing the data from Carr et al. Red dots represent

significant findings by MetaCyto.

(C) 2D plots visualizing the CD8+ T cells identified by

MetaCyto. Red dots represent the cells identified by

MetaCyto. Gray dots represent other cells in the

parental gate. Data from SDY420 are shown as an

example. Key cell lineage markers are plotted for

visual examination, not all of the markers are used

for gating in MetaCyto.

(D) A forest plot showing the effect size of ethnicity

(Asian compared to white) on the proportion of CD8+

T cells in the blood. The effect sizes were estimated

within each panel first and are combined using a

random-effect model.

In (A) and (B), r represents the Pearson correlation; p

represents the p value of r not equal to 0. In (D), p

was calculated using a random-effect model.
contributing to these results. Future studies are needed to iden-

tify the exact factors.

Meta-analysis Using MetaCyto Identifies Previously
Unreported Differences in Immune Cells between
Ethnic Groups
Our meta-analysis using the guided pipeline in MetaCyto re-

vealed five cell types to be significantly different between Asians

and whites. Asians have higher percentages of total CD4+ T cells

and CD4+ central memory T cells, and lower percentages of nat-

ural killer (NK) cells, naive CD8+ T cells, and total CD8+ T cells

(Figure 5A). Among these findings, only the difference of total

CD4+ T cells has been reported previously (Howard et al.,

1996). MetaCyto was able to identify this ethnic difference

consistently across all cytometry panels (Figure 5B). Combining

the results from all panels allowed us to confirm the difference

with high confidence (p = 1.2 3 10�7).

In all ten studies, Asian individualsmakeup less than25%of the

cohorts. To test whether our findings are affected by the data
Cell
imbalance,wedown-sampledwhite individ-

uals so that the number of white and Asian

individuals are equal. We found that the ef-

fect sizes are consistent before and after

down-sampling (correlation = 0.92). Impor-

tantly, the same ethnic differences (CD4+

T cells, NK cells, naive B cells, CD4 central

memorycells, andCD8Tcells) areobserved

after down-sampling (Figure S4).

To further confirm the four previously un-

reported ethnic differences, we inspected

the results from MetaCyto in detail. First,

we visualized the identified cell populations

in all studies and confirmed that our results

were not artifacts of automated gating (Fig-

ures 6A–6D). Second, as described in the
previous section, we tested whether these ethnic differences

were consistent across cytometry panels. Cochran’s Q test did

not identify significant heterogeneity between cytometry panels

(p values equal to 0.86, 0.27, 0.71, and 0.90 for NK cells, naive B

cells, CD4 central memory cells, and CD8 T cells, respectively).

Visual inspection of the forest plots also confirmed that the re-

sults were consistent in most of the cytometry panels (Figures

6E–6H).

Results from the unsupervised analysis identified multiple cell

types, other than the 23 types used in the guided analysis, whose

abundancewere different between Asians andwhites (Table S6).

As one example, we found that the proportion of a sub-popula-

tion of CD8+ T cells, the CD3+ CD4�CD45RA+CD8+ CD85J� cell

population, is significantly higher in Asians than in whites (Fig-

ure S5). A closer look at the forest plot revealed that the associ-

ation between this population and ethnicity was not at a signifi-

cant level in most studies taken independently. However, by

combining the results from multiple studies, we were able to

identify this association with high confidence (p = 0.0049).
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Figure 5. Meta-analysis of Cytometry Data

Using MetaCyto Identifies Multiple Ethnic

Differences in Immune Cells

(A) A plot showing the effect size of ethnicity (Asian

compare to white) on the proportion of 23 cell types

in blood. Dots and whiskers represent the means

and 95% confidence intervals.

(B) A forest plot showing the effect size of ethnicity

(Asian compared to white) on the proportion of

CD4+ T cells in the blood. The effect sizes were

estimated within each panel first and are combined

using a random-effect model. The p values were

calculated using random-effect models, adjusted

using Benjamini-Hochberg correction.
DISCUSSION

With the collection of publicly available cytometry studies rapidly

growing, researchers can often identify multiple studies that

were designed or can be re-purposed to answer a common

research question. Meta-analysis of these studies allows re-

searchers to answer the research question with a more robust

conclusion and higher statistical power. Many cytometry studies

that are publicly available include hundreds of high-dimensional

cytometry data. Performing meta-analysis manually on these

studies is not only time-consuming but also prone to human error

and bias. In this study, we developed and demonstrated a

computational tool called MetaCyto, which allows fully auto-

mated meta-analysis of both CyTOF and flow cytometry data.

When performing a meta-analysis of cytometry data, a big

challenge lies in the identification of common cell subsets across

heterogeneous cytometry studies. In MetaCyto, we imple-

mented two complementary analysis pipelines to automate the

cell identification process. The guided analysis pipeline is able

to identify cell populations using user-defined cell definitions.

For example, regulatory T cells can easily be identified using

the definition ‘‘CD3+ CD4+ Foxp3+.’’ Such an approach allows

researchers to incorporate their domain knowledge into the anal-

ysis, making the result more biologically relevant. In addition to

the guided analysis pipeline, MetaCyto also allows researchers

to identify cell populations in an unsupervised manor. Due to

the high dimensionality of cytometry data, an exhaustive grid

search will lead to an astronomical number of cell subsets. For

example, if we divide each marker into positive and negative re-

gions, 45 markers in a CyTOF experiment have 245 combina-

tions. To avoid such a situation, the unsupervised pipeline in

MetaCyto first identifies cell clusters using a clustering method.

Successful efforts were made by the community to develop effi-

cient clustering methods for flow cytometry data analysis. We

built MetaCyto to be fully compatible with existing clustering

methods. MetaCyto is able to merge and transform the clusters

from existing clustering algorithms in a biologically meaningful

way, therefore improving result quality and enabling further

meta-analysis of many studies.
1384 Cell Reports 24, 1377–1388, July 31, 2018
Based on the test result, we recommend

over-clustering the data first, followed by

the merging of the clusters by MetaCyto.

Such a strategy not only makes the
method tuning free but also is more computationally efficient

than traditional auto-tuning methods, which require running the

clustering algorithm multiple times with different parameters.

In MetaCyto, the distribution of each marker is bisected into

positive and negative regions using a silhouette-scanning

method. However, some markers may show tri-modal distribu-

tions. Although the silhouette-scanning method can easily be

modified to divide the distribution into three regions (low-me-

dium-high), only bisection is used in MetaCyto for the following

reasons. First, it is known that multiple technical factors, such

as auto-fluorescence, compensation, transformation, and non-

specific binding of antibodies, can lead to false tri-modal distri-

butions (Morice et al., 2004; Ray and Pyne, 2012). In these cases,

the low-medium-high regions do not represent distinct cell pop-

ulations. Second, upon examining multiple cytometry studies,

we found that although some markers (e.g., CD8, CD45RA,

CD127) show tri-modal distributions in certain cytometry

studies, they show bi-model distributions in other studies.

Such inconsistency makes it difficult to reliably relate cell sub-

sets across studies. Finally, our test result shows that bisection

using silhouette scanning is able to identify the population that

is truly positive for a marker even when the distribution is not

bi-modal.

It should be noted that abnormally ‘‘bright’’ particles, such as

beads and dead cells, will affect the silhouette scanningmethod.

Therefore, we recommend gating out the ‘‘bright’’ particles

before performing the meta-analysis. The MetaCyto R package

allow users to perform pre-gating using a user-defined strategy,

such as ‘‘PI� FSC+’’ for flow cytometry data and ‘‘Bead� DNA+’’

for CyTOF data.

A recent study (Diggins et al., 2017) has proposed a novel

method to annotate cell subsets using marker enrichment

modeling (MEM) scores. Although the approach is highly effec-

tive in individual datasets, several limitations exist for its use in

meta-analysis. First, the enrichment score is context dependent

and varies between studies, making it difficult to identify com-

mon cell types across studies. Second, the MEM method is de-

signed to label cell populations rather than identifying cell popu-

lations. As a result, if a clustering algorithm identifies a cell
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subset in dataset 1 but not in dataset 2, the cell subset will be

missed in a meta-analysis. In contrast, MetaCyto identifies the

cell subset in both datasets, allowing meta-analysis.

By combining samples from multiple studies, meta-analysis is

able to increase the statistical power of hypothesis testing. One

concern is that such approach may reach significant p values of

very weak biological phenomenon. Therefore, we would always

encourage users of MetaCyto to look at not just the statistics sig-

nificance but also the effect size. Our meta-analysis identified

four ethnic differences in immune cells, which to our knowledge

have not been reported previously. The findings not only have

significant p values but also have large effect sizes (around

0.3). The effect sizes are comparable with the effect size of

CD4 T cells, a well-characterized ethnic difference (Howard

et al., 1996), suggesting that these findings reflect important bio-

logical differences in the immune system.

There are several potential limitations of the current study. In

the unsupervised analysis pipeline of MetaCyto, although the

merging step makes the clustering result more robust, it may

eliminate some small cell populations of biological meaning. To

overcome this limitation, researchers can use a more sensitive

method, such as CITRUS (Bruggner et al., 2014), to identify the

cell subsets of interest from a single study. They can then craft

cell definitions for those subsets and use the guided analysis

pipeline of MetaCyto to perform meta-analysis across studies.

Another limitation is that our meta-analysis only established cor-

relations, rather than causations, between cell populations and

ethnicity. In-depth studies are needed to further validate our find-

ings and to identify the genetic or environmental causes of these

differences.

In summary, we developed MetaCyto, a computational tool

that allows the automated meta-analysis of cytometry data.

Applying MetaCyto to cytometry data from ten human immu-

nology studies allowed us to thoroughly characterize differences

in the immune system between Asian and white populations.

Other than the previously known differences in CD4+ T cell abun-

dance, we identified previously unreported cell populations

whose abundance were significantly different between the two

ethnicities, and demonstrated that the findings are consistent

across multiple independent studies. Our findings can help us

better understand the heterogeneity of the human immune sys-

tem in the population. They also serve as a starting point for

future studies to reveal the mechanisms behind ethnic discrep-

ancies in immune-related diseases

EXPERIMENTAL PROCEDURES

Data Aggregation

Flow cytometry data and CyTOF data were downloaded from ImmPort web

portal, including ImmPort: SDY112, SDY167 (Ledgerwood et al., 2012),

SDY180 (Obermoser et al., 2013), SDY311, SDY312, SDY314, SDY315,

SDY420 (Whiting et al., 2015), SDY478, and SDY736 (Wertheimer et al.,
Figure 6. Ethnic Differences Identified by MetaCyto Are Consistent ac

(A–D) Representative 2D plots visualizing the cell subsets (NK cells, A; naive B

MetaCyto. Red dots represent the cells identified by MetaCyto. Gray dots represe

Key cell lineage markers are plotted for visual examination; not all of the markers

(E–H) Forest plots showing the effect size of ethnicity (Asian compare towhite) estim

and CD4+ central memory T cells (H). The effect sizes were estimated within eac
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2014). Only fcs files from pre-vaccination blood samples of healthy adults

were included in the meta-analysis. Parameters, including antibodies and fluo-

rescence or isotope labels, used in each fcs file were then identified using the

fcsInfoParser function in MetaCyto. The fcs files were then organized into

panels, which are defined as a collection of fcs files from the same study

that have the same set of parameters.

We obtained the demographic information directly from the metadata asso-

ciated with each study. Specifically, the age, gender, and ethnicity information

were obtained from the ‘‘Subject_2_Flow_cytometry_result.txt’’ or ‘‘Sub-

ject_2_CyTOF_result.txt’’ tables. The ethnicity categories were standardized

according to the Standards for the Classification of Federal Data on Race

and Ethnicity (Federal Register, 1997) by the ImmPort data curation team.

Manual gating results for both FlowCAP WNV data (ID number FR-FCM-

ZZY3) were downloaded from the FlowRepository link: https://community.

cytobank.org/cytobank/experiments/4329.

All datasets were downloaded between September 1, 2016 and February 1,

2017.

Data Pre-processing

Flow cytometry data from ImmPort were compensated for fluorescence spill-

overs using the compensation matrix supplied in each fcs file. All data from

ImmPort were arcsinh transformed. For flow cytometry data, the formula

f(x) = arcsinh (x/150) was used. For CyTOF data, the formula f(x) = arcsinh

(x/8) was used. All transformation and compensation were done using the

preprocessing or preprocessing.batch function in MetaCyto.

Cytometry data FlowCAP WNV was transformed and subset to only include

protein markers. The pre-processing was doing using the same code provided

by the study by Weber and Robinson (2016): https://github.com/lmweber/

cytometry-clustering-comparison.

Bisecting Marker Distributions Using Silhouette Scanning

The range of a marker was divided into 100 intervals using 99 breaks. The dis-

tribution was bisected at each break and the corresponding average silhouette

(Rousseeuw, 1987) was calculated. The break giving rise to the largest average

silhouette was used as the cutoff for bisection.

Identifying Cell Subsets with the Guided Analysis Pipeline in

MetaCyto

Cell definitions were created based on the gating strategies provided by

authors of Immport: SDY420 and SDY478 or based on the cell definition

from the Human ImmunoPhenotyping Consortium (Finak et al., 2016). The

cell definitions are available in Tables S1, S2, and S4.

To identify the corresponding cell subsets, silhouette scanning was used to

bisect the distribution of cell markers into positive and negative regions. Cells

fulfilling the cell definitions were then identified. For example, the CD3+ CD4+

CD8� (CD4+ T cells) cell subset corresponds to the cells that fall into the CD3+

region, CD4+ region, and CD8� region concurrently. The proportion of each

cell subset in bloodwas calculated by dividing the number of cells in the subset

by the total number of cells in the blood. The procedure is performed using the

searchCluster or searchCluster.batch function in the MetaCyto package.

Identifying Cell Subsets with the Unsupervised Analysis Pipeline in

MetaCyto

FlowSOM (Van Gassen et al., 2015) or FlowMeans (Aghaeepour et al., 2011)

were used to identify cell clusters in the cytometry data. Silhouette scanning

was used to identify a threshold that bisects the distribution of cell markers

into positive and negative regions. To label the identified cell clusters, the

marker levels in each cluster were compared with the bisection threshold. If

the marker levels of 95% of cells in the cluster are above or below the
ross Cytometry Panels

cells, B; CD8+ T cells, C; and CD4+ central memory T cells, D) identified by

nt other cells in the parental gate. Data from SDY420 are shown as examples.

are used for gating in MetaCyto.

ated in each cytometry panel for NK cells (E), naiveB cells (F), CD8+ T cells (G),

h panel first and were combined using a random-effect model.

https://community.cytobank.org/cytobank/experiments/4329
https://community.cytobank.org/cytobank/experiments/4329
https://github.com/lmweber/cytometry-clustering-comparison
https://github.com/lmweber/cytometry-clustering-comparison


threshold, the cluster will be labeled as positive or negative for the marker,

respectively. Otherwise, the cluster will not be labeled for the marker. If a

marker is positive or negative in 95% of all cells, the marker is not used to label

any clusters. The procedure is performed using the labelCluster function in

MetaCyto.

MetaCyto then identifies the corresponding cell subsets using the generated

labels, in a fashion similar to the guided analysis pipeline. Notice that such a

process is equivalent of merging cell clusters that have the same labels into

a hyper-rectangle-shaped cluster. To capture all of the identified cell subsets,

the MetaCyto pools the labels from different studies and quantifies the

corresponding cell subsets in all studies, as long as the studies contain the

necessary cell marker. The proportion of each cell subset in blood was

calculated by dividing the number of cells in the subset by the total number

of cells in the blood. The procedure was performed using the searchCluster

or searchCluster.batch function in the MetaCyto package.

Statistical Analysis

Two-level hierarchical regressionmodels were used in themeta-analysis of the

ten human immunology studies from ImmPort: the proportion of cell subsets

was regressed against age, gender, and ethnicity (Y�age + gender + ethnicity)

in each cytometry panel. The effect size was defined as the regression coeffi-

cient divided by the standard deviation of Y. The overall effect size from all cy-

tometry panels was estimated using a random-effect model. For data from the

Carr study, the proportion of a cell population was regressed against age and

gender. Ethnicity information was missing in the data, and therefore was

omitted in the regression. All statistical analysis was performed using the

metaAnalysis function in MetaCyto. The p value was adjusted using the

Benjamini-Hochberg (Benjamini and Hochberg, 1995) correction.

To test the heterogeneity in Meta-analysis, Cochran’s Q test was performed

using the cochran.Q function in the Mada package.

In Figures 4A and 4B, Pearson correlations are calculated and tested against

the null hypothesis (correlation equals zero) using the cor.test function in R.

In Figure S5B, Shapiro-Wilk test was performed to check the normality

assumption using the shapiro.test function in R. F test was performed to check

the equal variance assumption using the var.test function in R. A two-sided un-

paired Mann-Whitney test is performed to test the difference between two

groups using the wilcox.test function in R.

Code Availability

The MetaCyto R package is available on Bioconductor: http://bioconductor.

org/packages/release/bioc/html/MetaCyto.html.

The source codes of the analysis are available on GitHub: https://github.

com/hzc363/MetaCyto_Paper_Code.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and six tables and can be found with this article online at

https://doi.org/10.1016/j.celrep.2018.07.003.
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