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Pulling the covers in electronic health records for an association study with
self-reported sleep behaviors
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aDepartment of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA; bDepartment of Medicine,
Vanderbilt University Medical Center, Nashville, Tennessee, USA; cDepartment of Biological Sciences, Vanderbilt University, Nashville,
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ABSTRACT
The electronic health record (EHR) contains rich histories of clinical care, but has not traditionally
been mined for information related to sleep habits. Here, we performed a retrospective EHR study
based on a cohort of 3,652 individuals with self-reported sleep behaviors documented from visits
to the sleep clinic. These individuals were obese (mean body mass index 33.6 kg/m2) and had a
high prevalence of sleep apnea (60.5%), however we found sleep behaviors largely concordant
with prior prospective cohort studies. In our cohort, average wake time was 1 hour later and
average sleep duration was 40 minutes longer on weekends than on weekdays (p < 10−12). Sleep
duration varied considerably as a function of age and tended to be longer in females and in
whites. Additionally, through phenome-wide association analyses, we found an association of
long weekend sleep with depression, and an unexpectedly large number of associations of long
weekday sleep with mental health and neurological disorders (q < 0.05). We then sought to
replicate previously published genetic associations with morning/evening preference on a subset
of our cohort with extant genotyping data (n = 555). While those findings did not replicate in our
cohort, a polymorphism (rs3754214) in high linkage disequilibrium with a previously published
polymorphism near TARS2 was associated with long sleep duration (p < 0.01). Collectively, our
results highlight the potential of the EHR for uncovering the correlates of human sleep in real-
world populations.
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Introduction

Most human sleep research to date has leveraged
prospective cohorts. However, issues related to
sleep are a common reason for individuals to visit a
healthcare provider, and information from these vis-
its is now often captured in the electronic health
record (EHR). The growth of EHRs provides an
opportunity to study retrospective cohorts and
drive advances not only in clinical care but also in
clinical research (Denny et al. 2016). Moreover, the
linking of EHR data with large DNA biobanks is
beginning to catalyze scientific discoveries through
techniques such as genome-wide and phenome-wide
association studies (GWAS and PheWAS) (Denny
et al. 2010). The phenome refers to the range of
phenotypes that can be documented in the EHR,
including patient histories and billing codes. This
information often receives less attention in clinical

sleep research, which typically focuses on pathologi-
cal sleep conditions in laboratory settings without
consideration of the participant’s medical history
(Zee et al. 2014). Conversely, observational sleep
research has revealed relationships of sleep behaviors
with both mental well-being and metabolic health
(Konttinen et al. 2014; De Souza and Hidalgo 2014,
2015; Vera et al. 2018). These studies also demon-
strated the interaction of sleep with biological sex
and age, which are variables typically available in the
EHR. Thus, mining the EHR for sleep behaviors
could give us a way to corroborate trends observed
in previous sleep studies and to identify new associa-
tions with clinical phenotypes.

While controlled studies with objective sleepmea-
sures provide the strongest evidence for the conse-
quences of sleep disruption, such as the impact on
mental health (Minkel et al. 2012), these associations
have also been observed through the use of simple

CONTACT Jacob J. Hughey jakejhughey@gmail.com 2525 West End Ave, Nashville, TN 37203, Suite 1500
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/icbi.

Supplemental data for this article can be accessed here.

CHRONOBIOLOGY INTERNATIONAL
https://doi.org/10.1080/07420528.2018.1508152

© 2018 Taylor & Francis Group, LLC

http://orcid.org/0000-0003-3849-2162
http://orcid.org/0000-0002-1558-6089
http://www.tandfonline.com/ICBI
https://doi.org/10.1080/07420528.2018.1508152
https://crossmark.crossref.org/dialog/?doi=10.1080/07420528.2018.1508152&domain=pdf&date_stamp=2018-08-29


questionnaires (An et al. 2015; Gylen et al. 2014;
Konttinen et al. 2014; De Souza and Hidalgo 2015).
In fact, associations of sleep with age, gender, race
and metabolic parameters such as body mass index
(BMI) are largely consistent, regardless of how the
sleepmetrics are acquired (Dietch et al. 2017; Fischer
et al. 2017; Hashizaki et al. 2015; Lauderdale et al.
2006; Liu et al. 2012; Ohayon et al. 2004; Rutters et al.
2014; Silva et al. 2007; Urbanek et al. 2017).
Questionnaires such as the Morningness–
Eveningness Questionnaire (Horne and Ostberg
1976) and Munich Chronotype Questionnaire
(Roenneberg et al. 2003) are common approaches
to gauge an individual’s preferred schedule of activ-
ity and rest (i.e. chronotype) and are correlated with
underlying physiology, including endogenous tem-
perature cycles (Baehr et al. 2000) and dim-light
melatonin onset (Kantermann et al. 2015).

The validity of self-reported sleep measures has
enabled genome-wide association studies in large
cohorts (23AndMe and UK Biobank), revealing
genetic variants associated with chronotype and
sleep duration (Hu et al. 2016; Jones et al. 2016; Lane
et al. 2016). The overlapping variants across these
studies support a causal role for genetics in sleep,
though the effect sizes tend to be small. In addition,
recent work suggests that in addition to genetics, sleep
is moderated by health states linked to lifestyle beha-
viors (Vera et al. 2018). If suchhealth states, alongwith
sleep measures, were documented in EHR data linked
toDNAbiobanks,we could further probe the relation-
ships between genetics, sleep and health.

In this work, we explored the potential of the
EHR as a resource for clinical sleep research. We
first developed a method to extract self-reported
sleep behaviors from de-identified EHR data of the
Vanderbilt University Medical Center. From this
method, we derived a cohort and examined asso-
ciations of their sleep behaviors with demo-
graphics, clinical phenotypes and genetics.
Collectively, our results establish the utility of the
EHR for retrospective studies of human sleep.

Materials and methods

Access to the raw data used in this study is
restricted. However, all code and figures related
to this study are available at https://doi.org/10.
6084/m9.figshare.6406136.

Sleep phenotype extraction

Our data source is the Synthetic Derivative (SD),
Vanderbilt’s database of de-identified medical records
(Danciu et al. 2014). To extract sleep behaviors from
the SD, we wrote a text parser to detect any mention
of sleep in the clinical notes. Within this query, 4,136
notes contained structured fields for “Bedtime on
weekdays”, “Bedtime on weekends”, “Wake time on
weekdays”, and “Wake time on weekends”. Weekday
and weekend are not explicitly defined in the clinical
notes, so we cannot be sure what the physician means
or how the patient interprets those terms.
Nonetheless, we interpret weekend bedtimes to refer
to Friday and Saturday nights, and weekend wake
times to Saturday and Sunday mornings. These
notes were from visits to the Vanderbilt Sleep
Center and spanned 2002 to 2017 (Fig. S1).

Results from the parser were then manually
curated, with 74 notes removed due to vague entries
and 177 notes edited due to either parser errors or
obvious entry errors (e.g. if bedtime was reported as
“11-12pm”, instead of “11–12am”, when wake time
was reported as “6am”). This dataset is small enough
to be manually curated in its entirety by a single
researcher, which means the parser did not have to
be overly sophisticated. Given that our manual cura-
tion only removed or edited data for 6% of notes,
however, larger collections of notes could likely be
parsed in a fully automated fashion. Four reports
indicating sleep duration of greater than 18 hours of
sleep duration were removed. If an entry contained a
time window, we used the midpoint (e.g. 10:30pm as
the value derived from “Bedtime on weekdays:
10-11pm”), unless the time range was greater than 4
hours (e.g. “9pm–2am”), in which case we removed
the note from the dataset. For this study, we limited
the dataset to notes from adults (at least 18 years old at
the time of visit to the sleep clinic). Races other than
black and white were grouped into “other”.
Additionally, we removed non-physiological BMI
values greater than 80 and less than 15, which are
caused by data entry error. The final dataset consisted
of 3,699 reports from 3,652 individuals.

Statistical analysis

To determine how our sleep cohort compares to a
general population from the Vanderbilt EHR, we
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derived a 1:1 matched cohort in the SD by age (in
years, at the time of their last visit in the records),
sex, race and duration of record (in years).
Pairwise comparisons across cohorts were per-
formed using student’s t-tests, and prevalence of
phenotype codes through a two-proportion z-test.
To account for the cyclical nature of clock time,
we adjusted bed, wake and midpoint times as a
difference in hours from the circular mean, calcu-
lated using the circular R package v0.4–93. The
circular mean is based on treating times as points
on the unit circle, then calculating the arithmetic
mean of those points, then converting back to time
(Jammalamadaka and SenGupta 2001). We calcu-
lated additional quantitative phenotypes from the
sleep self-reports, including sleep duration and
measures of weekday-to-weekend shifts in sleep
behaviors (called “social jetlag” or “social sleep
lag” in the sleep literature (Wittmann et al.
2006)). Social sleep lag was calculated by the cir-
cular difference between weekday and weekend
sleep midpoints, positive if individuals delayed
their weekend midpoint, and negative if indivi-
duals advanced their weekend midpoint. Pairwise
comparisons of sleep behaviors within the sleep
cohort, such as sleep duration by gender, were
also performed using student’s t-tests.

We modeled sleep behaviors as a function of
demographic variables and BMI at the time of
the sleep clinic visit using an ordinal cumulative
probability model with the rms R package v5.1–2
(Harrell 2018). We chose the default logistic
distribution function for the dependent (ordinal)
variable (weekday sleep duration, weekend sleep
duration, weekend sleep midpoint or social sleep
lag), with categorization automatically selected
by the rms package. We performed model selec-
tion in an iterative process. We first added terms
for gender, race and age. Age was fit as a
restricted cubic spline, and the number of
knots in the splines (we considered between 3
and 7) was chosen based on likelihood ratio
tests. The positions of knots were determined
by the rms package. We then tested increasingly
complex models by adding BMI and interaction
terms, assessing goodness of fit via likelihood
ratio tests. BMI values were log-transformed
before modeling. We performed analysis in R
v3.4.1 and generated plots using ggplot2 v2.2.1.

Phenome-wide association analysis

We explored associations between self-reported
sleep behaviors and phenotype codes (“phecodes”),
which have been mapped to related ICD-9-CM
codes for research purposes. Details for the map-
ping procedures are described elsewhere, and the
mappings themselves are publicly available at
http://phewascatalog.org (Denny et al. 2013).
These clinical diagnoses were modeled as depen-
dent variables in a logistic regression model, with
independent variables being sleep duration or
social sleep lag, along with age, gender and race.
Cases for a particular phecode consisted of sub-
jects with that phecode in the record on at least
two distinct dates, whereas controls had zero
instances of the respective phecode. Each phecode
defines a control group for analysis using a set of
exclusion phecodes (based on version 1.2 of the
phecode mappings). Thus, individuals who do not
have the phecode of interest but have an exclusion
phecode are considered neither cases nor controls
and removed from the model. We analyzed only
those phecodes with a prevalence of at least 1% in
the sleep cohort and accounted for multiple-test-
ing through a false-discovery rate procedure
(Benjamini and Hochberg 1995).

Genetic association analysis

To find genetic associations with sleep phenotypes,
we leveraged multiple data sources within BioVU,
Vanderbilt’s de-identified DNA biobank linked to
the SD (Roden et al. 2008). Genotyping data comes
from the Illumina Infinium Human Exome
BeadChip (Cronin et al. 2014) and the Illumina
Infinium Expanded Multi-Ethnic Genotyping
Array (MEGAEX). We considered data on indivi-
duals of European ancestry. In total, 111 individuals
in the sleep cohort had data on both platforms, and
for any variant discrepancies across the two plat-
forms, we used the calls from the Exome BeadChip.
Collectively, we performed genetic association ana-
lysis on 555 unique individuals in the sleep cohort.
We compiled a list of SNPs having significant asso-
ciations with self-reported chronotype (Hu et al.
2016; Jones et al. 2016; Lane et al. 2016) and
expanded our search by considering tagging SNPs
that are in high LD (r2 > 0.80) with the published
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SNPs. We identified tagging SNPs on European
ancestry genotype data from Phase 3 (version 5)
of the 1000 Genomes Project using the LDproxy
tool at https://analysistools.nci.nih.gov/LDlink/.
SNPs with less than 1% minor allelic frequency
(MAF) were removed from consideration.
Associations with sleep phenotypes were modeled
by ordinal regression, with additive genetic effects
and adjustments for age and gender. We performed
power analysis using the method of Derkach et al.
(2018), with inputs of MAF and effect size from the
GWAS results on a continuous chronotype mea-
surement (Jones et al. 2016; Lane et al. 2016).

Results

Characteristics of a sleep cohort obtained from
the EHR

We searched the clinical notes in the Vanderbilt
SD for mentions of sleep behavior and found that
notes from the sleep clinic often contain struc-
tured information on patients’ self-reported bed-
times and wake times on weekdays and weekends
(see Materials and Methods for details, Fig. S1).
We parsed these notes to yield a dataset of 3,699
sleep reports from 3,652 individuals (which we call
the sleep cohort, Fig. S2). This cohort consists of
predominantly white adults (Table 1), whichre-
flects the population in the Vanderbilt SD, and is
also generally obese, with subjects having a BMI of
33.6 ± 8.9 kg/m2 (mean ± S.D.) at the time of their
visit to the sleep clinic.

To assess the clinical features of this cohort, we
calculated the prevalence of diagnoses in their
records (based on phecodes, a grouping of ICD-9
codes designed for high-throughput analysis
(Denny et al. 2010)) and matched a cohort in the
SD based on age, sex, race and duration of the
medical record. The diagnosis with the highest

prevalence in the sleep cohort corresponds to
obstructive sleep apnea (60.5%, compared with
5.3% in the matched cohort, Fig. S3). Other highly
prevalent phecodes in the sleep cohort included
known comorbidities of obstructive sleep apnea
(Somers et al. 2008), such as obesity, hypertension
and hyperlipidemia (p < 1 · 10−56 by two-propor-
tion z-test). Additionally, the number of total clin-
ical encounters differed significantly between
cohorts (Table 1), indicating that the individuals
visiting the sleep clinic are heavy users of the
healthcare system, and not necessarily representa-
tive of healthy adults. Nonetheless, the sleep
cohort presents an opportunity to examine the
correlates of self-reported sleep behaviors in a
real-world population.

Relationships between EHR-derived, self-reported
sleep behaviors and demographics in the sleep
cohort

We next examined the distributions of self-
reported bedtimes and wake times on weekdays
and weekends, and their relationships with gen-
der, race and age. As expected, we observed
large shifts between weekdays and weekends.
Mean weekday and weekend wake times shifted
from 6:20am to 7:20am, respectively (Figure 1,
p = 1.86 · 10−88), and sleep midpoint shifted
from 2:22am on weekdays to 3:03am on week-
ends (p = 4.52 · 10−13).

Both weekday and weekend sleep durations
were associated with gender, race and age in
an ordinal regression model (p < 0.05,
Table 2, Figure 2, Supplementary Files 1–2).
Specifically, sleep durations tended to be longer
in females and whites, which has been observed
in prior studies (Dietch et al. 2017; Lauderdale
et al. 2006). Weekday-to-weekend sleep mid-
point shift, i.e. “social sleep lag”, also

Table 1. Cohort characteristics. The sleep cohort was matched by length of record, age, gender and
race. Numbers for gender, race, and ethnicity correspond to percentages. Numbers for age,
phecodes and visits correspond to mean (SD). P values are based on a student’s t-test.

Sleep Cohort (n = 3652) Matched Cohort (n = 3646) P-value

Gender (male/female) 50.7/49.3 - -
Race (black/white/other) 14.2/80.6/5.2 - -
Age at visit 48.0 (13.7) - -
Total number of unique phecodes 54.0 (52.1) 27.7 (30.6) 2.9 · 10−146

Number of visits 91.3 (111.1) 38.8 (60.4) 5.3 · 10−133
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expectedly varied across age (Table 2, Figure 3a,
Supplementary File 3), demonstrating the
extent to which younger individuals shift their
sleep schedules (Hashizaki et al. 2015;
Koopman et al. 2017). Social sleep lag, however,
was not significantly associated with gender or
race. Weekend sleep midpoint also associated
strongly with age, although race and gender

showed little effect (Table 2, Supplementary
File 4). As metabolic health has been closely
tied to sleep behaviors (Liu et al. 2012;
Reutrakul et al. 2013; Rutters et al. 2014),
we also checked for associations of sleep mid-
point with BMI at the time of visit to the sleep
clinic. BMI, and interactions between BMI and
gender, were strongly associated with sleep
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Figure 1. Distribution of self-reported bed and wake times for the sleep cohort. Bedtimes past midnight were adjusted to separate
bed and wake times and ease visualization.

Table 2. Model statistics for final weekday sleep duration (n = 3405), weekend sleep duration (n = 3399), social sleep lag (n = 3324),
and weekend sleep midpoint (n = 3391) models in an ordinal regression procedure. Numbers represent p values for each predictor
variable, and asterisks indicate the model described in the main text and figures. Age is modeled as a restricted spline in both
individual and interaction terms which contain age. Model building and selection is detailed in Supplementary Files 1–4.

Gender Race Age BMI Age * BMI Age * Gender

Weekday sleep duration
Model 1 8.65 · 10−8 - - - - -
Model 2 2.97 · 10−9 8.24 · 10−8 - - - -
Model 3* 1.81 · 10−9 5.81 · 10−8 3.16 · 10−17 - - -
Model 4 6.88 · 10−10 4.47 · 10−7 1.36 · 10−15 0.10 - -
Weekend sleep duration
Model 1 4.88 · 10−17 - - - - -
Model 2 2.24 · 10−18 3.34 · 10−4 - - - -
Model 3* 1.55 · 10−17 6.49 · 10−6 4.72 · 10−22 - - -
Model 4 1.58 · 10−17 8.06 · 10−6 5.92 · 10−22 0.80 - -
Social sleep lag
Model 1 3.46 · 10−3 - - - - -
Model 2 5.38 · 10−3 0.03 - - - -
Model 3* 0.08 0.87 6.59 · 10−76 - - -
Model 4 0.09 0.86 1.26 · 10−75 0.87 - -
Weekend sleep midpoint
Model 1 0.01 - - - - -
Model 2 0.02 0.29 - - - -
Model 3 0.11 0.77 4.02 · 10−80 - - -
Model 4 0.16 0.56 2.09 · 10−80 8.56 · 10−3 - -
Model 5 0.23 0.60 1.55 · 10−80 8.44 · 10−3 5.42 · 10−4 -
Model 6* 0.24 0.58 9.32 · 10−81 7.96 · 10−3 2.21 · 10−4 5.18 · 10−5
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midpoint, as were to interactions between gen-
der and age (Table 2, Figure 3b). Conditional
on the model, heavier individuals were pre-
dicted to continually shift their sleep midpoint
later with age, whereas thinner individuals were
predicted to maintain relatively stable mid-
points in adulthood. These trends did not

hold for weekday sleep midpoint, with age as
the only significant covariate (not shown). We
also did not find a significant association of
BMI in any other sleep phenotype model
(Table 2). Collectively, the relationships
between these EHR-derived, self-reported sleep
behaviors and demographic variables
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demonstrate a general concordance with pre-
vious studies.

Associations between sleep behaviors and
clinical phenotypes

We then analyzed the extent to which our cohort’s
sleep behaviors were associated with clinical diagnoses
(Denny et al. 2010), adjusting for gender, age and race.
In this PheWAS approach, we found that longer self-
reported sleep duration on weekends most strongly
associated with depression (q = 2.49 · 10−3, Figure 4a),
which is consistent with a recent meta-analysis (Zhai
et al. 2015). Sleepmidpoint on weekends, on the other
hand, was not significantly associated with any clinical
phenotypes. Unexpectedly, sleep duration on week-
days was associated with a large number of pheno-
types, including many mental and neurological
disorders (Figure 4b). These phenotypes may covary
in the sleep cohort, which could explain the lower-
than-expected test statistics of the quantile–quantile
plot (Fig. S4). Overall, we found few instances in
which a higher prevalence of the clinical phenotype
was significantly associated with shorter sleep, which
may be a result of our cohort containing few short
sleepers. Individuals who advance their sleep sche-
dules on weekends demonstrated an increased asso-
ciation with respiratory and neurological diagnoses
(Figure 4c). Taken together, these results replicate

previous associations between sleep andmental health
and suggest new hypotheses for future investigation.

Targeted replication of associations between
sleep behaviors and genetic variants

Of the 3,647 individuals in the sleep cohort, 555 have
genotype data available through BioVU, Vanderbilt’s
de-identified DNA biobank linked to the SD (Roden
et al. 2008). Because of this relatively small size, rather
than performing a genome-wide search for associa-
tions between sleep behaviors and genetic variation,
we instead attempted to replicate significant associa-
tions between single-nucleotide polymorphisms
(SNPs) and self-reported morningness–eveningness
from much larger recent sleep GWASes (Hu et al.
2016; Jones et al. 2016; Lane et al. 2016). Three such
SNPs from these studies are assayed on our genotyp-
ing platform and have amean allelic frequency greater
than 1%: rs12140153, rs1144566 and rs35333999.
However, our power to detect associations with
these SNPs was 0.51, 0.43 and 0.38, respectively,
which likely explains these SNPs' lack of association
with any of our sleep phenotypes. We expanded our
search by considering two additional SNPs, rs3754214
and rs9753974, in high linkage disequilibrium with
the published SNPs. Of these, rs3754214, close to
rs10157197 (located near TARS2, r2 = 0.90), was asso-
ciated with increased weekday (β = 0.44 (0.12),
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Figure 4. PheWAS for (a) weekend sleep duration and (b) weekday sleep duration. Light grey lines indicate q = 0.05, and darker grey
lines q = 0.01. Phecodes with q < 0.05 are annotated, except for weekday sleep duration (for ease of visualization).
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p = 1.54 · 10−4, Figure 5a) and weekend sleep duration
(β = 0.31 (0.11), p = 0.006, Figure 5b, Table 3). Our
data show greater than 15 minutes in increased sleep
duration for each C allele, which far exceeds effect
sizes of SNPs found to associate with sleep duration
(Jones et al. 2016). While rs10157197 is 1 of 13 SNPs
whose associations replicated across the 23AndMe
and UK Biobank datasets for chronotype (Hu et al.
2016; Jones et al. 2016), Jones et al. did not find such
an association with sleep duration. Although these
results are preliminary, they suggest that the pre-
viously observed genetic contributions to sleep may
be moderated by the health-related characteristics of
individuals in the sleep cohort.

Discussion

In this study, we parsed notes in the EHR for any
mention of sleep and discovered structured entries

for self-reported bed and wake times at the sleep
clinic. Although the cohort is not representative of
healthy adults, we found associations of the sleep
patterns comparable to recent work, establishing
the suitability of this dataset for exploratory analysis
of sleep behaviors with phenome-wide and genetic
information.

The sleep behaviors used in this study come from
routine questions asked by the physician at the sleep
clinic, which raises several limitations. These ques-
tions are not derived from validated sleep question-
naires, and many of the responses regarding bed and
wake times were imprecise. Beyond concerns of pre-
cision, we cannot be sure of the extent of bias in how
patients respond to clinicians’ questions compared
with how they would respond to a validated question-
naire. Finally, the generalizability of our approach
depends on the extent to which similar information
is obtainable in other institutions’ EHRs. Future work
may benefit from more sophisticated natural lan-
guage-processing techniques to identify mentions of
sleep-related behaviors (such as shift work) in
unstructured text outside sleep clinic notes.

The observational nature of the EHRmakes deter-
mination of causality difficult. Furthermore, most
individuals in our cohort have only one clinical
encounter with sleep information, and the pheno-
types in our phenome-wide association study are
based on each subject’s entire record, both before
and after the sleep clinic visit(s). We expect that
integration of the EHR with longitudinal sleep
assessments, such as from wearables and continuous
positive airway pressure ventilators, will help unravel
the time-dependent relationships between sleep and
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Figure 5. (a) Weekend sleep duration and (b) weekday sleep duration by alleles of variant rs3754214 in the sleep cohort with extant
genotyping (n = 555), significant in an ordinal regression procedure.

Table 3. Genetic association analysis with weekday and week-
end sleep duration in an ordinal regression model (n = 555).
Asterisks indicate SNPs previously associated with chronotype,
while those without asterisks indicate SNPs in high LD (r2 > 0.80)
with any of these published SNPs.

Coef S.E. P-value

Weekday sleep duration
rs3754214 0.44 0.12 1.54 · 10−4

rs9573974 0.48 0.29 0.11
rs35333999* 0.36 0.35 0.31
rs1144566* 0.14 0.30 0.64
rs12140153* 0.10 0.21 0.66
Weekend sleep duration
rs3754214 0.31 0.11 6.21 · 10−3

rs9573974 0.59 0.29 0.04
rs35333999* −0.49 0.30 0.11
rs1144566* −0.05 0.35 0.88
rs12140153* −0.02 0.21 0.91
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other clinical phenotypes (Baron et al. 2017; Hwang
2016).

Although this study is based on a convenience
sample, many of our findings are consistent with
previous studies based on prospective cohorts. For
example, weekday sleep duration follows a U-shaped
curve as a function of age and ultimately converges
with weekend sleep duration in older individuals.
These patterns are consistent with expected con-
straints of working-age adults and altered sleep
requirements in the elderly and have been observed
previously (Hashizaki et al. 2015; Ohayon et al. 2004;
Silva et al. 2007). Both sleep midpoint and sleep lag
also vary as a function of age, which has been
observed in adolescents and young adults (Hashizaki
et al. 2015; Fischer et al. 2017; Koopman et al. 2017;
Rutters et al. 2014; Urbanek et al. 2017). Gender and
race did not explain social sleep lag, which may reflect
broader cultural norms and chronotype shifts in
younger individuals regardless of background. The
average weekend sleep duration of 8.59 hours closely
matches sleep durations from other studies based on
self-reported data (Fischer et al. 2017; Koopman et al.
2017; Liu et al. 2012; Rutters et al. 2014), which
commonly overestimates sleep duration compared
with objective measures such as actigraphy (Arora
et al. 2013; Dietch et al. 2017; Lauderdale et al. 2006;
Silva et al. 2007). Well-established trends in both
objective and subjective sleep analyses demonstrate
whites sleep upwards of 45minutes longer than blacks
(Dietch et al. 2017; Lauderdale et al. 2006), and
women sleep upwards of 30 minutes longer than
men (Dietch et al. 2017; Lauderdale et al. 2006; Liu
et al. 2012; Urbanek et al. 2017), which are all con-
sistent with our findings.

We find a greater discordance to prior work with
our cohort’s sleep midpoints, which typically vary
from 3:00am to 4:30am in adults (Fischer et al.
2017; Hashizaki et al. 2015; Lucassen et al. 2013;
Rutters et al. 2014). Our cohort’s sleep midpoints
resemble those of morning chronotypes among
obese adults (Lucassen et al. 2013) and elderly indi-
viduals (Fischer et al. 2017), which may speak to a
morning preference in our older and obese cohort.
Although multiple studies have investigated inter-
actions between metabolic health and sleep (Liu
et al. 2012; Reutrakul et al. 2013; Rutters et al.
2014), our cohort shows little evidence of an asso-
ciation between BMI and sleep duration, which

may be a consequence of our cohort’s high preva-
lence of obesity. Our analysis did identify a moder-
ate effect of BMI on sleep midpoint in older
individuals, highlighting a potential metabolic influ-
ence on sleep during aging.

Deriving sleep behaviors from the EHR allowed us
to quantify associationswith a broad range of clinically
defined phenotypes. The association between long
weekend sleep and depression is supported by ques-
tionnaire-based studies (Sun et al. 2018), however,
long weekday sleep duration unexpectedly shows
very strong associations with clusters of mental health
andneurological conditions.One possible explanation
for the differences betweenPheWAS analyses for sleep
duration on weekdays and weekends is that long sleep
duration on weekends stems from accumulating sleep
debt during the week, while abnormal sleep patterns
on weekdays may occur despite social and societal
constraints and have a deeper clinical basis. Given
our cohort consists of relatively fewer short sleepers,
associations of disease with short sleep noted in the
literature are likely muted. Nonetheless, our findings
could open new avenues of research to fully under-
stand the risks of excessive sleep.

The limited number of individuals in the sleep
cohort with genotype data available prevented a thor-
ough attempt to replicate known genetic associations.
Only one prior GWAS to date analyzed both chron-
otypes and sleep duration (Jones et al. 2016). The
variants found to associate with sleep duration were
not included in our exome array, effectively limiting
our genetic association analysis to variants associated
with chronotype. Thus, our power analysis is only
approximate, as the published effect sizes for chron-
otype may not align with our sleep phenotypes. Even
so, we are still likely underpowered to detect these
associations in our cohort. Although we identified a
variant in high LD with rs10157197 that was asso-
ciated with sleep duration, the effect size is consider-
ably larger than anything observed in the previous
GWAS. Additional studies with larger sample sizes
will be needed to further delineate these effects.

In conclusion, our findings support the use of
the EHR for sleep research on clinically relevant
populations. As the EHR grows to include data
from consumer devices that monitor sleep and
other behaviors, approaches like ours may help
reveal the relationships between sleep and other
aspects of human health on an unprecedented
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scale, and we expect advances in clinical infor-
matics will continue to benefit sleep research.
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