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ABSTRACT
The ubiquitous daily rhythms in mammalian physiology are guided by progression
of the circadian clock. In mice, systemic disruption of the clock can promote tumor
growth. In vitro, multiple oncogenes can disrupt the clock. However, due to the
difficulties of studying circadian rhythms in solid tissues in humans, whether the clock
is disrupted within human tumors has remained unknown. We sought to determine
the state of the circadian clock in human cancer using publicly available transcriptome
data. We developed a method, called the clock correlation distance (CCD), to infer
circadian clock progression in a group of samples based on the co-expression of 12
clock genes. Our method can be applied to modestly sized datasets in which samples
are not labeled with time of day and coverage of the circadian cycle is incomplete. We
used the method to define a signature of clock gene co-expression in healthy mouse
organs, then validated the signature in healthy human tissues. By then comparing
human tumor and non-tumor samples from twenty datasets of a range of cancer
types, we discovered that clock gene co-expression in tumors is consistently perturbed.
Subsequent analysis of data from clock gene knockouts inmice suggested that perturbed
clock gene co-expression in human cancer is not caused solely by the inactivation of
clock genes. Furthermore, focusing on lung cancer, we found that human lung tumors
showed systematic changes in expression in a large set of genes previously inferred to be
rhythmic in healthy lung. Our findings suggest that clock progression is dysregulated
in many solid human cancers and that this dysregulation could have broad effects on
circadian physiology within tumors. In addition, our approach opens the door to using
publicly available data to infer circadian clock progression in a multitude of human
phenotypes.

Subjects Bioinformatics, Computational Biology, Genomics, Oncology
Keywords Circadian clock, Gene co-expression, Cancer, Transcriptome

INTRODUCTION
Daily rhythms in mammalian physiology are guided by a system of oscillators called the
circadian clock (Dibner, Schibler & Albrecht, 2010). The core clock consists of feedback
loops between several genes and proteins, and based on work in mice, is active in nearly
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every tissue in the body (Yoo et al., 2004; Zhang et al., 2014). The clock aligns itself to
environmental cues, particularly cycles of light-dark and food intake (Damiola et al.,
2000; Asher et al., 2010; Eckel-Mahan et al., 2013). In turn, the clock regulates various
aspects of metabolism (Nakahata et al., 2009; Cho et al., 2012; Neufeld-Cohen et al., 2016;
Guerrero-Vargas et al., 2017) and is tightly linked to the cell cycle (Matsuo et al., 2003;
Gréchez-Cassiau et al., 2008; Geyfman et al., 2012; Feillet et al., 2014; Bieler et al., 2014;
Matsu-Ura et al., 2016; El-Athman et al., 2017).

Consistent with the tight connections between the circadian clock, metabolism, and the
cell cycle, multiple studies have found that systemic disruption of the circadian system
can promote cancer. In humans, long-term rotating shift work and night shift work,
which perturb sleep-wake and circadian rhythms, have been associated with breast, colon,
and lung cancer (Schernhammer et al., 2001; Schernhammer et al., 2003; Schernhammer
et al., 2013; Wegrzyn et al., 2017). In mice, environmental disruption of the circadian
system (e.g., through severe and chronic jet lag) increases the risk of breast cancer and
hepatocellular carcinoma (Van Dycke et al., 2015; Kettner et al., 2016). Furthermore, both
environmental and genetic disruption of the circadian system promote tumor growth and
decrease survival in amousemodel of human lung adenocarcinoma (Papagiannakopoulos et
al., 2016). While these studies support the link from the clock to cancer, other studies have
established a link in the other direction,wherebymultiple components of a tumor, including
the RAS and MYC oncogenes, can induce dysregulation of the circadian clock (Relógio et
al., 2014;Michael et al., 2015; Altman et al., 2015). Despite this progress, however, whether
the clock is actually disrupted within human tumors has remained unclear. Given recent
findings that stimulating the circadian clock slows tumor growth in a mouse model of
melanoma (Kiessling et al., 2017), it is important to determine the extent of clock disruption
across human cancers, in order to delineate the general potential of anti-tumor strategies
based on restoring or improving clock function.

When the mammalian circadian clock is progressing or ‘‘ticking’’ normally, clock genes
and clock-controlled genes show characteristic rhythms in expression throughout the body
and in vitro (Balsalobre, Damiola & Schibler, 1998; Yoo et al., 2004; Zhang et al., 2014).
These rhythms can be used to monitor clock progression in humans (Laing et al., 2017;
Hughey, 2017). Measurements of circadian rhythms through time-course experiments
have revealed that the clock is altered or perturbed in some human breast cancer cell lines
(Rossetti et al., 2012; Xiang et al., 2012). Computational methods for analyzing rhythmicity
require that samples be labeled with time of day (or time since start of experiment) and
acquired throughout the 24-h cycle (Hughey, Hastie & Butte, 2016; Thaben & Westermark,
2016; Wu et al., 2016). Unfortunately, existing data from resected human tumors meet
neither of these criteria. In this scenario, one approach might be to look for associations
between the expression levels of clock genes and other biological and clinical variables. For
example, in human breast cancer, the expression levels of several clock genes have been
associated with metastasis-free survival (with the direction of association depending on the
gene) (Cadenas et al., 2014). However, because a functional circadian clock is marked less
by the levels of gene expression than by rhythms in gene expression, this type of analysis
cannot necessarily be used to determine whether the clock is progressing normally.
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A more sophisticated approach is to assume the presence of rhythms and to infer a
cyclical ordering of samples, using methods such as Oscope or CYCLOPS (Leng et al.,
2015; Anafi et al., 2017). By applying CYCLOPS to transcriptome data from hepatocellular
carcinoma, Anafi et al. (2017) found evidence for weaker or disrupted rhythmicity of
several clock genes, as well as genes involved in apoptosis and JAK-STAT signaling, in
tumor samples compared to non-tumor samples. Although CYCLOPS does not require
that samples be labeled with time of day, it does require that the samples cover the entire
cycle. Consequently, the authors recommend that CYCLOPS be applied to datasets from
humans with at least 250 samples (Anafi et al., 2017). In addition, although CYCLOPS
can be used to infer rhythmicity in the expression of individual genes, it is not designed
to quantify differences in the overall pattern of those rhythms (e.g., the relative phasing
between genes) between conditions (e.g., healthy and diseased).

Rather than attempting to infer an oscillation, an alternative approach might be to take
advantage of the pattern of co-expression (e.g., pairwise correlation) that results from
different clock genes having rhythms with different phases. Indeed, a previous study found
different levels of co-expression between a few clock genes in different subtypes and grades
of human breast cancer (Cadenas et al., 2014). Although this finding was an important
first step, its generalizability has been limited because the correlations in expression were
not examined for all clock genes, in other human cancer types, or in healthy tissues where
the circadian clock is known to be functional. Thus, a definitive answer to whether the
circadian clock is progressing normally in human tumors is still lacking.

In this study, we developed a computational method to characterize the extent of
dysregulation of circadian clock progression in human cancer. Using transcriptome data
from mice, we defined a robust signature of clock progression based on the co-expression
of clock genes. We validated the signature using transcriptome data from various organs
in humans, then examined the extent to which the signature was perturbed in tumor
compared to non-tumor samples from The Cancer Genome Atlas (TCGA) and from
multiple independent datasets. Our findings suggest that dysregulation of circadian clock
progression is present in a wide range of human cancers, is not caused solely by the
inactivation of core clock genes, and is accompanied by systematic changes in broader
circadian gene expression.

MATERIALS AND METHODS
Study design
The main goals of this study were to develop a co-expression-based signature of the
circadian clock, to validate the signature in healthy human organs, and to use the signature
to infer the extent of normal circadian clock progression in human cancer. We focused on
transcriptome data because of its wide availability. We selected the datasets of circadian
gene expression in mice (both for defining the reference signature and for comparing
clock gene knockouts to wild-type) to represent multiple organs, light-dark regimens, and
microarray platforms.

We selected the datasets from healthy human organs to include as many circadian
studies as possible and to include a range of organs. The dataset from human skin consisted
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of samples taken at only three time-points for each subject (9:30 am, 2:30 pm, and 7:30
pm). Datasets from human blood consisted of multiple samples taken throughout the
24-h cycle for each subject. Datasets from human brain were based on postmortem tissue
from multiple anatomical areas, and zeitgeber time for each sample was calculated using
the respective donor’s date and time of death and geographic location. Datasets from cells
cultured in vitro were based on time-courses following synchronization by dexamethasone,
serum, or alternating temperature cycles. For GSE45642 (human brain), we only included
samples from control subjects (i.e., we excluded subjects with major depressive disorder).

For datasets of human cancer, we analyzed data from the Cancer Genome Atlas (TCGA),
as it contains samples from various cancer types. To complement the breadth of cancer
types in TCGA data, we further included human liver cancer and lung cancer datasets
from NCBI GEO. We analyzed human cancer datasets that had at least 30 non-tumor
samples. When analyzing clock gene expression in human cancer, unless otherwise noted,
we included all tumor and non-tumor samples, not just those from patients from whom
both non-tumor and tumor samples were collected. For details of the datasets, all of which
are publicly available, see Table S1.

Processing the gene expression data
For TCGA samples, we obtained the processed RNA-seq data (in units of transcripts per
million, TPM, on a gene-level basis) and the corresponding metadata (cancer type, patient
ID, etc.) from GSE62944 (Rahman et al., 2015). For E-MTAB-3428, we downloaded the
RNA-seq read files from the European Nucleotide Archive, used Salmon to quantify
transcript-level abundances in units of TPM (Patro et al., 2017), then used the mapping
between Ensembl Transcript IDs and Entrez Gene IDs to calculate gene-level abundances.

For the remaining datasets, raw (in the case of Affymetrix) or processed microarray data
were obtained from NCBI GEO and processed using MetaPredict, which maps probes to
Entrez Gene IDs and performs intra-study normalization and log-transformation (Hughey
& Butte, 2015). MetaPredict processes raw Affymetrix data using RMA and customCDFs
(Irizarry et al., 2003; Dai et al., 2005). As in our previous study, we used ComBat to reduce
batch effects between anatomical areas in human brain and between subjects in human
blood (Johnson, Li & Rabinovic, 2007; Hughey & Butte, 2016). We also used ComBat to
normalize expression between between subjects in the circadian human skin dataset
(Fig. S8). ComBat is an empirical Bayes method to standardize the mean and variance of
gene expression values between groups of samples.

Analyzing clock gene expression and co-expression
We first focused on the expression of 12 genes that are considered part of the core clock or
are directly controlled by the clock and that show strong, consistently phased rhythms in
multiple mouse organs (Zhang et al., 2014; Hughey, Hastie & Butte, 2016). We calculated
times of peak expression (Fig. S2) and strengths of circadian rhythmicity of expression in
wild-type and knockout mice (Fig. S15) using ZeitZeiger (Hughey, Hastie & Butte, 2016),
with three knots for the periodic smoothing splines (Helwig & Ma, 2014). ZeitZeiger uses
the time of day information for each sample.

Shilts et al. (2018), PeerJ, DOI 10.7717/peerj.4327 4/29

https://peerj.com
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE45642
http://dx.doi.org/10.7717/peerj.4327#supp-2
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62944
http://dx.doi.org/10.7717/peerj.4327#supp-1
http://dx.doi.org/10.7717/peerj.4327#supp-1
http://dx.doi.org/10.7717/peerj.4327#supp-1
http://dx.doi.org/10.7717/peerj.4327


We quantified the relationship between expression values of pairs of genes using the
Spearman correlation (rho), which is rank-based and therefore invariant to monotonic
transformations such as the logarithm and less sensitive to outliers than the Pearson
correlation. Using the biweight midcorrelation (Song, Langfelder & Horvath, 2012), which
is also robust to outliers, gave very similar results. All heatmaps of clock gene co-
expression have the same mapping of correlation value to color, so they are directly visually
comparable.

For a group of samples from a given dataset, we estimated the strength of clock gene
co-expression (Fig. S7) as the difference between the 95th and 5th percentiles of the
distribution of Spearman correlations between pairs of the 12 clock genes.

We calculated the reference Spearman correlation for each pair of clock genes (Table S2)
using a fixed-effects meta-analysis (Hedges & Olkin, 1985) of the eight mouse datasets
shown in Fig. S1. First, we applied the Fisher z-transformation (arctanh) to the correlations
from each dataset. Then we calculated a weighted average of the transformed correlations,
where the weight for dataset i was ni−3 (corresponding to the inverse variance of the
transformed correlation), where ni is the number of samples in dataset i. Finally, we
applied the inverse transformation (tanh) to the weighted average.

To quantify the similarity in clock gene co-expression between the reference and a
group of samples from another transcriptome dataset, we calculated the Euclidean distance
between the respective Spearman correlation vectors, which contain all values in the strictly
lower (or strictly upper) triangular part of the correlation matrix. We call this distance the
clock correlation distance (CCD). A smaller CCD indicates greater similarity in clock gene
co-expression. Although here we used Euclidean distance, other distance metrics could be
used as well.

To estimate the probability that the observed CCD is less than would be expected by
chance, we randomly selected 12 genes (from all genes measured in that dataset) 1,000
times, in order to estimate a null distribution of CCDs. We then calculated the exact
one-sided p-value using the number of random samplings that gave a CCD less than
or equal to the observed CCD and the method of Phipson and Smyth in the statmod R
package (Phipson & Smyth, 2010). For the eight mouse datasets that form the reference, we
calculated the CCD between each unique pair of datasets, essentially taking one dataset in
each pair to be the reference.

To quantify the extent to which clock gene co-expression is perturbed in samples from
one condition (e.g., tumor) relative to samples from another condition (e.g., non-tumor)
in a given dataset, we calculated the CCD for each condition relative to themouse reference,
then calculated the difference between those CCDs. We call this difference the delta clock
correlation distance (1CCD). In this study, a positive 1CCD indicates that clock gene
co-expression in tumor (or knockout) samples is less similar to the reference than is clock
gene co-expression in non-tumor (or wild-type) samples.

To evaluate the probability that the1CCD is greater than would be expected by chance,
we permuted the condition labels of the samples and recalculated the 1CCD 1,000 times,
always keeping the reference fixed.We then calculated the exact one-sided p-value using the
number of permutations that gave a 1CCD greater than or equal to the observed 1CCD
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and the method of Phipson and Smyth in the statmod R package (Phipson & Smyth, 2010).
Since we used the one-sided p-value, the alternative hypothesis was that non-tumor (or
wild-type) is more similar to the reference than is tumor (or knockout).

To calculate the 1CCD for individual tumor grades in TCGA data, we used the clinical
metadata provided in GSE62944. We analyzed all combinations of TGCA cancer type and
tumor grade that included at least 50 tumor samples. In each case, we calculated the1CCD
using all non-tumor samples of the respective cancer type.

To compare 1CCD and tumor purity, we used published consensus purity estimates
for TCGA tumor samples (Aran, Sirota & Butte, 2015). The estimates are based on DNA
methylation, somatic copy number variation, and the expression of immune genes and
stromal genes (none of which are clock genes).

To quantify differential expression between tumor and non-tumor samples and between
knockout and wild-type samples, we used limma and voom (Smyth, 2004; Law et al., 2014).
To ensure a fair comparison between human and mouse data, we ignored time of day
information in the mouse samples. We quantified the variation in expression of clock
genes in each dataset and condition using the median absolute deviation (MAD), which is
less sensitive to outliers than the standard deviation.

Analyzing circadian gene expression in human lung cancer
We obtained the set of rhythmic transcripts (identified by microarray probe ID) inferred
by CYCLOPS to be rhythmic in healthy human lung (Anafi et al., 2017). This set contains
transcripts whose abundance was well described by a sinusoidal function of CYCLOPS
phase in samples from both the Laval and GRNG sites of GSE23546 (Bonferroni-corrected
P < 0.05 and peak/trough ratio >2) and whose orthologs were rhythmic in mouse lung.
We mapped the microarray probes to Entrez Gene IDs and calculated the acrophase for
each gene as the circular mean of the provided acrophase for the corresponding probes.
Phase values inferred by CYCLOPS are relative, so Anafi et al. adopted the convention of
setting phase π(in radians) to the average acrophase of the PAR bZip transcription factors
(DBP, HLF, and TEF) (Anafi et al., 2017).

Because some of the module preservation statistics calculated by NetRep use the
expression matrix directly, we used ComBat (Johnson, Li & Rabinovic, 2007) to merge
the expression data from the Laval and Groningen sites of GSE23546. We then followed
WGCNA’s recommended procedure for identifying gene modules, i.e., groups of genes
with correlated expression across samples (Langfelder & Horvath, 2008). Briefly, starting
with the merged expression data, we calculated the Spearman correlation matrix for the
1,292 genes, then used the signed method with a soft thresholding power of 12 to calculate
the adjacency matrix, then calculated the topological overlap dissimilarity matrix. We used
hierarchical clustering of the dissimilarity matrix and adaptive branch pruning to define
modules of genes, followed by a procedure to merge closely related modules. We then used
the DAVID web application (version 6.8) to discover functional categories enriched in
each module (Huang, Sherman & Lempicki, 2009).

We used NetRep (Ritchie et al., 2016) to calculate seven module preservation statistics
between healthy human lung and the non-tumor and tumor samples from five datasets
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of human lung cancer (LUAD and LUSC from TCGA and GSE19188, GSE19804, and
GSE32863 from NCBI GEO). We excluded GSE10072, because it included expression
levels for only 876 of the 1,292 genes (the other five datasets included at least 1,199 of the
1,292 genes). When calculating module preservation, NetRep automatically removed any
genes that were not measured in both healthy human lung and the group of samples to
which it was being compared. For non-tumor and tumor samples from each dataset, we
calculated the Spearman correlationmatrix and adjacencymatrix using the same procedure
as for healthy human lung.

To evaluate the statistical significance of the difference in each module preservation
statistic between non-tumor and tumor samples, we performed permutation testing and
calculated one-sided p-values similarly to the procedure for1CCD, permuting the sample
labels (non-tumor or tumor) in the test dataset and recalculating module preservation
1,000 times. Note this is different from the standard way WGCNA and NetRep perform
permutations, which is to shuffle the gene labels.

Periodic smoothing splines of log2 fold-change as a function of acrophase in healthy lung
were fit using ZeitZeiger (Hughey, Hastie & Butte, 2016). P-values of non-zero amplitude
of the spline fits were calculated using 1,000 permutations of the relationship between
acrophase and log2 fold-change and the method of Phipson and Smyth (Phipson & Smyth,
2010). For Phase Set Enrichment Analysis (Zhang et al., 2016), we used the canonical
pathways gene sets from MSigDB (Liberzon et al., 2011) and looked for gene sets with a
q-value ≤0.1 against a uniform distribution and vector-average value within 0.4 radians
of either 0.07 π or 1.06 π (the mean phases of the peak and trough of the spline fits,
respectively). No gene sets met the criteria for the former.

RESULTS
Consistent co-expression of clock genes in mice
The progression of the mammalian circadian clock is marked by daily rhythms in gene
expression throughout the body (Zhang et al., 2014). We hypothesized that the relative
phasing of different genes’ rhythms would result in those genes having a characteristic
pattern of co-expression. Such a pattern could be used to infer the progression of the clock
within a group of samples, even if the samples are not labeled with time of day, as long as
they were taken from multiple parts of the circadian cycle.

Although most circadian gene expression is tissue-specific, the rhythms of a select group
of genes show consistent relative phasing in multiple organs in mice and humans (Hughey
& Butte, 2016). We focused on 12 genes from this group, each of which is part of the core
clock or directly controlled by the clock, in order to define a general signature of circadian
clock progression. For the rest of the paper, we refer to these 12 genes as ‘‘clock genes.’’

As a first test of our hypothesis, we assembled eight publicly available datasets of
genome-wide circadian gene expression from various healthy mouse organs (Oster et
al., 2006; Hoogerwerf et al., 2008; Hughes et al., 2009; Negoro et al., 2012; Geyfman et al.,
2012; Haspel et al., 2014; Zhang et al., 2014) (Table S1). The organs were collected from
mice under both constant darkness and alternating light-dark cycles. For each dataset, we
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calculated the Spearman correlation between expression values (over all samples) of each
pair of clock genes.

The pattern of co-expression was highly consistent across datasets (for 59 of 66 gene
pairs, the sign of the Spearman correlation was the same in at least six of eight datasets;
Fig. S1). Co-expression revealed two groups of genes, where the genes within a group
tended to be positively correlated with each other and negatively correlated with genes
in the other group. Genes in the first group (Arntl, Npas2, and Clock), which form the
positive arm of the clock (Partch, Green & Takahashi, 2014), peaked in expression shortly
before zeitgeber time 0 (ZT0, which corresponds to time of lights on or sunrise; Fig. S2).
Genes in the second group (Cry2, Nr1d1, Nr1d2, Per1, Per2, Per3, Dbp, and Tef), which
form the negative arms of the clock, peaked in expression near ZT10. Cry1, which was
part of the first group in some datasets and the second group in others, tended to peak in
expression near ZT18. These results indicate that the progression of the circadian clock in
various mouse organs produces a consistent pattern of co-expression between clock genes.

To construct a single reference pattern of clock gene co-expression, we combined the
eight datasets in a fixed-effects meta-analysis (Figs. 1A–1B and Materials and Methods).
To compare clock gene co-expression between the reference and a group of samples from
another dataset, we developed a metric we call the clock correlation distance (CCD), which
corresponds to the Euclidean distance between the respective correlation vectors (Fig. 1A).
A smaller CCD indicates a greater similarity in clock gene co-expression. To estimate the
probability that the observed CCD is less than would be expected by chance, we estimated
the distribution of CCD that would result from using 12 randomly selected genes instead
of the 12 clock genes. As a positive control, we calculated the Euclidean distance between
the correlation vectors corresponding to all pairs of the eight mouse datasets (P ≤ 0.001 by
permutation test for each pair; Fig. 1C and Fig. S3).

We used the reference pattern and the CCDmetric to verify that clock gene co-expression
arises from the phasing of the genes’ rhythms relative to each other, not their phasing relative
to time of day. Thus, the pattern is not affected by phase differences between groups of
samples, such as those caused by daytime feeding in mice (Vollmers et al., 2009) (P ≤ 0.001
for CCD relative to reference; Fig. S4).

Most computational methods for quantifying circadian rhythmicity and inferring the
status of the clock require that samples be acquired over the entire 24-h cycle. Because
our approach does not attempt to infer oscillations, we wondered if it would be robust
to partial coverage of the 24-h cycle. We therefore analyzed clock gene co-expression in
three of the original eight datasets, in samples acquired during the first 8 h of the day (or
subjective day) or the first 8 h of the night (or subjective night). In each dataset, clock gene
co-expression was preserved in both daytime and nighttime samples (P ≤ 0.001; Fig. S5).
Thus, our approach can detect the signature of clock progression in groups of samples
without using time of day information, even if the samples’ coverage of the 24-h cycle is
incomplete.
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Figure 1 Consistent patterns of clock gene co-expression in mice and humans. (A) Schematic of proce-
dure for constructing a reference pattern of clock gene co-expression from healthy mouse organs and for
comparing clock gene co-expression in an independent dataset to the mouse reference using the clock cor-
relation distance (CCD). (B) Heatmap of Spearman correlation (rho) between clock genes for the mouse
reference, based on a fixed-effects meta-analysis as described in the (continued on next page. . . )

Full-size DOI: 10.7717/peerj.4327/fig-1

Shilts et al. (2018), PeerJ, DOI 10.7717/peerj.4327 9/29

https://peerj.com
https://doi.org/10.7717/peerj.4327/fig-1
http://dx.doi.org/10.7717/peerj.4327


Figure 1 (. . .continued)
Materials and Methods. (C) Clock correlation distance (CCD) for mouse and human datasets. For the
boxplot corresponding to the mouse reference, distances were calculated between each pair of datasets (8
datasets give 28 unique pairs; Fig. S3). For human datasets, the CCD was calculated relative to the mouse
reference. Example human (labeled) datasets are shown in (D), and example human (unlabeled) datasets
are shown in (E). P-value corresponds to the probability that 12 randomly selected genes (instead of the
12 clock genes) could produce a CCD less than or equal to the one observed. (D) Heatmaps of Spearman
correlation in three human datasets for which samples are labeled with time of day (or time since synchro-
nization, for GSE50631). (E) Heatmaps for three datasets not designed to study circadian rhythms and
for which samples are not labeled with time of day. Heatmaps not shown here are shown in Fig. S6. All
heatmaps of clock gene co-expression in Figs. 1 and 2, and the supplemental figures have the same map-
ping of correlation value to color, so they are directly visually comparable.

Validation of the co-expression pattern in human tissues
We next examined clock gene co-expression in nine publicly available datasets of circadian
gene expression from human tissues: one from skin, two from brain, three from blood,
and three from cells cultured in vitro (Hughes et al., 2009; Spörl et al., 2012; Möller-Levet
et al., 2013; Li et al., 2013; Janich et al., 2013; Archer et al., 2014; Hoffmann et al., 2014;
Arnardottir et al., 2014; Chen et al., 2016) (Table S1). Samples from these datasets are
labeled with time of day (or in the case of cells in vitro, time since synchronization) and
were taken from multiple time-points in the circadian cycle. Other than the two datasets
of U2OS cells, which are derived from an osteosarcoma but show normal rhythms of the
core clock genes (Vollmers, Panda & DiTacchio, 2008; Maier et al., 2009), all samples were
from healthy tissue.

Although gene expression rhythms in mice and humans show different phasing relative
to the light-dark cycle (Hughey & Butte, 2016), the pattern of clock gene co-expression in
the human datasets significantly resembled the reference pattern from mice (P ≤ 0.001
for three of three in vitro datasets and four of six in vivo datasets; Figs. 1C–1D and Fig.
S6). The CCDs of the datasets varied: skin and in vitro cells had the smallest (i.e., the
strongest similarity to mice), brain was intermediate, and blood had the largest (Fig. 1C).
Correlations between clock genes in the latter two organs were generally weaker than those
in mice (Fig. S7), consistent with noisier circadian rhythms in those datasets (Hughey &
Butte, 2016). The co-expression pattern in the human skin dataset, for which samples were
acquired from each individual at three time-points (9:30 am, 2:30 pm, and 7:30 pm), was
due to co-expression both across individuals at each time-point and across time-points
within each individual (Fig. S8).

To confirm our findings in additional human organs, we analyzed eight transcriptome
datasets from healthy human lung, liver, skin, and adipose tissue (Schadt et al., 2008;
Innocenti et al., 2011; Bossé et al., 2012; Grundberg et al., 2012; Bonder et al., 2014) (Table
S1). Samples from these datasets were not collected for the purpose of studying circadian
rhythms. Thus, the samples are not labeled with time of day and may not cover the entire
circadian cycle. Nonetheless, clock gene co-expression in these datasets was similar to that
of mice (P ≤ 0.001 for all 8 datasets; Figs. 1C, 1E, and Fig. S9), with CCDs comparable to
those of datasets designed to quantify circadian rhythms in humans in vivo. The generally
weaker co-expression patterns and higher CCDs in human in vivo datasets compared
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to mouse datasets is likely due to data collected from humans having more sources of
variation (including technical, environmental, and genetic variation). We conclude that
our approach can detect the signature of circadian clock progression in publicly available
transcriptome data from various human tissues, even in datasets not designed to quantify
circadian rhythms.

Aberrant patterns of clock gene co-expression in human cancer
We then turned our attention to clock gene co-expression in human cancer. We started
with RNA-seq data collected by The Cancer Genome Atlas (TCGA) and reprocessed using
the Rsubread package (Rahman et al., 2015). TCGA samples are from surgical resections
performed prior to neoadjuvant treatment. We analyzed TCGA data from the 12 cancer
types that included at least 30 samples from adjacent non-tumor tissue (Table S1). To study
human hepatocellular carcinoma and non-small cell lung cancer in more depth, we also
analyzed eight datasets from the NCBI Gene Expression Omnibus (GEO), each of which
had tumor and adjacent non-tumor samples (Landi et al., 2008; Hou et al., 2010; Lu et al.,
2010; Roessler et al., 2010; Lamb et al., 2011; Selamat et al., 2012; Lim et al., 2013; Villa et
al., 2016) (Table S1). For all data from TCGA and GEO, the times of day of surgery are not
available. Presumably, most to all of the samples were acquired during surgical working
hours (6:00 am to 6:00 pm).

To quantify the extent to which clock gene co-expression is perturbed in tumor samples
compared to non-tumor samples in a given dataset, we calculated the difference between
the CCDs (relative to the mouse reference) for each condition. We call this difference the
delta clock correlation distance (1CCD), where a 1CCD >0 indicates that clock gene
co-expression in tumor samples is less similar to the reference than that of non-tumor
samples (Fig. 2A).We continued to use the reference frommouse data, instead of one based
on human data, in order to maintain a strict separation of training and validation data
and because in the mouse data, the effects of other sources of variation and confounding
are minimized. Thus, the mouse data offered the clearest window into the clock gene co-
expression that results from circadian clock progression in vivo. To evaluate the probability
that the 1CCD is greater than would be expected by chance, we permuted the condition
labels of the samples and recalculated the 1CCD 1,000 times.

Clock gene co-expression in non-tumor samples was similar to that observed in solid
healthy human tissues (P ≤ 0.005 for CCD relative to the mouse reference in 14 of 20
datasets; Figs. 2B–2C and Fig. S10). In contrast, co-expression in tumor samples often
lacked a significant similarity to the expected pattern (P > 0.05 for CCD in 10 of 20
datasets; Figs. 2B–2C and Fig. S10). Consequently, tumor CCDs were significantly higher
than non-tumor CCDs (P = 1.4 ·10−8 by paired t -test) and each human cancer dataset
had a 1CCD >0 (P ≤ 0.005 in 15 of 20 datasets; Fig. 2D and Fig. S11A). Among the three
TCGA cancer types with the lowest1CCD, prostate adenocarcinoma had a relatively high
non-tumor CCD, whereas renal clear cell carcinoma and thyroid carcinoma each had a
relatively low tumor CCD (Fig. S11B). Interestingly, we observed no clear trend between
1CCD and histological tumor grade (Fig. S12). Overall, these results suggest that circadian
clock progression is perturbed in a range of human cancers.
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Figure 2 Loss of normal clock gene co-expression in human tumor samples from various cancer types.
(A) Schematic of procedure for comparing clock gene co-expression, relative to the mouse reference, be-
tween non-tumor and tumor samples from human cancer datasets. (B) Heatmaps of Spearman correla-
tion between clock genes for non-tumor and tumor samples from two (continued on next page. . . )
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Figure 2 (. . .continued)
TCGA cancer types and two NCBI GEO datasets. Abbreviations: breast invasive cell carcinoma (BRCA),
colon adenocarcinoma (COAD), hepatocellular carcinoma (HCC), lung adenocarcinoma (LUAD).
Heatmaps for the other 16 human cancer datasets are shown in Fig. S9. (C) Clock correlation distance
(CCD) for non-tumor and tumor samples relative to the mouse reference. Each point corresponds to one
condition in one dataset. ‘‘Human in vivo’’ corresponds to the human in vivo datasets shown in Fig. 1C
(labeled and unlabeled), minus the human blood datasets. P-value corresponds to the probability that 12
randomly selected genes (instead of the 12 clock genes) could produce a CCD less than or equal to the
one observed. (D) Delta clock correlation distance (1CCD) between non-tumor and tumor samples in
12 TCGA cancer types and 8 datasets from NCBI GEO. Each point corresponds to one dataset. Positive
1CCD indicates perturbed clock gene co-expression in tumor samples relative to non-tumor samples.
P-value corresponds to the probability that a random permutation of the samples’ condition labels could
produce a1CCD greater than or equal to the one observed.

Tumors are a complex mixture of cancer cells and various non-cancerous cell types.
The proportion of cancer cells in a tumor sample is called the tumor purity and is an
important factor to consider in genomic analyses of bulk tumors (Aran, Sirota & Butte,
2015). We therefore examined the relationship between 1CCD and tumor purity in the
TCGA data. With the exception of thyroid carcinoma and prostate adenocarcinoma,
1CCD and median tumor purity across TCGA cancer types were positively correlated
(Fig. S13; Spearman correlation = 0.67, P = 0.059 by exact test). These findings suggest
that at least in some tumors, clock progression is perturbed more strongly in cancer cells
than in non-cancerous cells.

Distinct patterns of clock gene expression in human cancer and clock
gene knockouts in mice
To better understand the nature of the dysregulation of clock progression, in particular to
determine if the pattern of clock gene co-expression in human tumors could be explained by
inactivation of core clock genes, we compared clock gene expression in human cancer and
in clock gene knockouts in mice. We assembled seven datasets of circadian gene expression,
measured in various tissues, that included samples from wild-type mice and from mice
in which at least one core clock gene was knocked out, either in the entire animal or in a
specific cell type (Vollmers et al., 2009; Cho et al., 2012; Nikolaeva et al., 2012; Paschos et al.,
2012; Dyar et al., 2014; Young et al., 2014; Dudek et al., 2016) (Table S1). For each dataset,
we calculated clock gene co-expression in wild-type and knockout samples (Fig. S14).

The two datasets with the highest1CCD (>50% higher than any1CCD we observed in
human cancer) were those in which the knockoutmice lacked not one, but two components
of the clock (Cry1 and Cry2 in GSE13093; Nr1d1 and Nr1d2 in GSE34018; Fig. 3A). The
1CCDs for the other five datasets were similar to or somewhat lower than the 1CCDs
we observed in human cancer. Due to the smaller sample sizes compared to the human
cancer datasets, the 1CCDs for four of seven datasets of clock gene knockouts were not
significantly greater than zero (P > 0.05).

To further compare clock gene expression in human cancer and clock gene knockouts,
we calculated differential expression of the clock genes between non-tumor and tumor
samples and between wild-type and knockout samples (Fig. 3B). Differential expression
in the knockouts was largely consistent with current understanding of the core clock. For
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Figure 3 Changes in clock gene expression in human cancer are distinct from those caused by knock-
out of the clock genes in mice. (A) Delta clock correlation distance (1CCD) for human cancer datasets
(TCGA and GEO) and for clock gene knockout datasets from mice. (B) Heatmaps of the estimated log2
fold-change in expression between tumor and non-tumor samples or between knockout and wild-type
samples. A positive value indicates higher expression in tumor samples (continued on next page. . . )
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Figure 3 (. . .continued)
or knockout samples, respectively. (C) Heatmaps of the log2 ratio of the median absolute deviation
(MAD) of expression in tumor compared to non-tumor samples and knockout compared to wild-type
samples. In the legend, MADa refers to tumor or knockout samples, MADb refers to non-tumor or
wild-type samples. A positive value indicates that the variation in expression of that gene is greater in
tumor (or knockout) samples than in non-tumor (or wild-type) samples. For RNA-seq data (TCGA and
chondrocyte Arntl KO), expression values were based on log2 (TPM+ 1), where TPM is transcripts per
million. For microarray data, expression values were based on log-transformed, normalized intensity.
Within each dataset group, datasets are ordered by descending1CCD.

example, knockout of Arntl (the primary transcriptional activator) tended to cause reduced
expression of Nr1d1, Nr1d2, Per1, Per2, Per3, Dbp, and Tef, and increased or unchanged
expression of the other clock genes. In the double knockout of Cry1 and Cry2 (two negative
regulators of the clock), this pattern was reversed. Interestingly, neither of these patterns
of differential expression was apparent in human cancer.

In the clock gene knockouts, rhythmic expression ofmost clock genes was reduced or lost
(calculated using each sample’s time of day; Fig. S15). Without time of day information in
the human cancer datasets, it was not possible to directly quantify rhythms of clock genes in
non-tumor and tumor samples. However, we reasoned that a proxy for rhythmicity could
be the magnitude of variation in expression. Therefore, for each human cancer dataset,
we calculated the median absolute deviation (MAD) in expression of the clock genes
in non-tumor and tumor samples. We then compared the log2 ratios of MAD between
tumor and non-tumor samples to the log2 ratios of MAD between knockout and wild-type
samples from the clock gene knockout data (Fig. 3C). As expected, samples from clock gene
knockouts showed widespread reductions in MAD compared to samples from wild-type
mice. In contrast, human tumor samples tended to show similar or somewhat higher
MAD compared to non-tumor samples. The distinct patterns of differential expression
and differential variability between tumor and non-tumor samples, compared to knockout
and wild-type samples, imply that dysregulation of clock progression in human cancer is
not due solely to the inactivation of one or more clock genes.

Dysregulation of broader circadian gene expression in human lung
cancer
Finally, we explored how dysregulation of clock progression might affect the circadian
transcriptome. We obtained a set of 1,292 genes that were inferred by the CYCLOPS
method to be rhythmic in a dataset from healthy human lung (Anafi et al., 2017). By
applying WGCNA (Langfelder & Horvath, 2008) to the same dataset, we grouped the 1,292
genes into five modules according to their co-expression (Fig. 4A). Based on DAVID
(Huang, Sherman & Lempicki, 2009) and consistent with the analysis of Anafi et al. (2017),
the five modules were enriched for genes involved in various biological processes, including
angiogenesis, phosphoprotein signaling, and alternative splicing (Table S3). We then used
NetRep (Ritchie et al., 2016) to determine the extent to which eachmodule was preserved in
non-tumor and tumor samples from five datasets of human lung cancer (two from TCGA
and three from NCBI GEO). Notably, all five datasets had≤65 non-tumor samples and the
three datasets from NCBI GEO had≤91 tumor samples, too few for CYCLOPS to produce
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Figure 4 Perturbed expression of normally rhythmic genes in human lung cancer. (A) Hierarchical
clustering of 1,292 genes inferred to have a circadian rhythm in healthy human lung. Gene modules were
defined by following the procedure recommended by WGCNA. The number of genes in modules 1–5
are 62, 75, 828, 291, and 36. (B) Statistical significance of differential module preservation between non-
tumor and tumor samples for seven preservation statistics for each module in each dataset. One-sided
p-values are based on 1,000 permutations of the sample labels in the respective test dataset. Abbrevia-
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(NSCLC). (C) Scatterplots of log2 fold-change in each lung cancer dataset vs. the phase of peak expression
(acrophase, in radians) in healthy lung. Acrophase π is defined to be the circular mean of the acrophases
of the circadian clock-driven PAR bZip transcription factors DBP, TEF, and HLF. Each point corresponds
to one of the 1,292 genes. Each blue curve indicates a fit to a periodic smoothing spline. The circular mean
of the trough of the spline fits is 1.06π .

Full-size DOI: 10.7717/peerj.4327/fig-4

a reliable ordering. Based on this analysis, four of five modules (comprising 1,256 of 1,292
rhythmic genes) were significantly more strongly preserved in non-tumor compared to
tumor samples (Fig. 4B, P ≤ 0.001 for at least two of seven preservation statistics in at least
four of five datasets).

We also quantified differential expression of the 1,292 normally rhythmic genes between
non-tumor and tumor samples in the five lung cancer datasets. We then examined the
relationship between each gene’s log2 fold-change (tumor vs. non-tumor) and its phase
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of peak expression (acrophase) in healthy lung as inferred by CYCLOPS. Remarkably, we
observed a consistent pattern, in which genes with an acrophase near π tended to show
the strongest decrease in expression in tumor samples (Fig. 4C, P ≤ 0.001 of non-zero
amplitude by permutation testing for each dataset). Using Phase Set Enrichment Analysis
(Zhang et al., 2016), we found that genes with an acrophase near π were particularly
enriched for involvement in G protein-coupled receptor signaling (Table S4). Taken
together, these findings suggest that perturbed clock progression in human lung cancer is
accompanied by systematic changes in broader circadian gene expression.

DISCUSSION
Increasing evidence has suggested that systemic disruption of the circadian clock can
promote tumor development and that components of a tumor can disrupt the circadian
clock (reviewed in Lamia, 2017). Until now, however, whether the clock is progressing, i.e.,
oscillating, normally within human tumors has been unclear. Here we developed a simple
method to detect the signature of clock progression based on the co-expression of a small
set of genes. By applying the method to publicly available cancer transcriptome data, we
discovered that clock progression may be perturbed in multiple types of human cancer.
Our analysis also suggests that dysregulation of clock progression in cancer is not caused
solely by inactivation of core clock genes and is accompanied by large-scale changes in
circadian gene expression and co-expression.

Our approach relies on three principles. First, we use prior knowledge of clock genes and
clock-controlled genes. Second, we account for the fact that clock progression is defined not
by a static condition, but by a dynamic cycle. Our approach thus exploits the co-expression
of clock genes that arises from (1) different genes having rhythms with different circadian
phases and (2) different samples being taken from different points in the cycle. Finally, our
method does not attempt to infer an oscillatory pattern, but instead uses only the statistical
correlations in expression between pairs of genes. The underlying assumption of the
1CCD is that perturbations to the clock will alter the relative phases and/or signal-to-noise
ratios of rhythms in clock gene expression and thereby alter the correlations. Although
the correlation matrix captures only part of the complex relationship between genes, it is
intuitive, simple to calculate, and requires relatively few samples (our results indicate that
30 in humans may be sufficient). Altogether, these principles enable our method to detect
perturbed clock progression in groups of samples whose times of acquisition are unknown
and whose coverage of the 24-h cycle is incomplete. Consequently, the CCD and 1CCD
should be a valuable complement to methods designed to infer rhythms in omics data,
such as CYCLOPS (Anafi et al., 2017).

Despite these advantages, our method does have limitations. First, a large CCD does
not exclude the possibility that the clock genes are still rhythmic. Instead, it implies that
if rhythms are present, the phase relationships between genes are greatly altered relative
to a normally progressing clock. Similarly, despite altered expression and co-expression
levels, some of the genes rhythmic in healthy lung may still be rhythmic in lung cancer.
Second, clock gene co-expression is insensitive to the alignment of the circadian clock
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to time of day, and so cannot detect a phase difference between conditions, such as that
recently observed during manic episodes of bipolar disorder (Moon et al., 2016). This
limitation, however, allowed us to readily compare clock gene co-expression between
mice and humans, despite the circadian phase difference between the two species (Hughey
& Butte, 2016). Third, as shown by our analysis of clock gene knockouts in mice, larger
sample sizes are required to find differences in co-expression than to find differences
in rhythms (the former does not require time of day information, the latter does). This
is partly because differences in co-expression are invariant to the relative levels of gene
expression between conditions, which is why we also analyzed differential expression and
differential variability. Fourth, transcription is only one facet of the core clock mechanism,
and perturbations to post-translational modification or degradation of clock proteins
(if unaccompanied by changes in clock gene expression) would not be detected by our
approach. Finally, because co-expression is calculated for a group of samples, our approach
does not immediately lend itself to assessing clock progression in single samples. Thus,
although our results support dysregulated clock progression in tumors as a group, there
may be some tumors in which the clock is progressing normally. In the future, it may be
possible to complement the1CCDmetric and infer clock progression in a given individual
by directly comparing matched healthy and disease samples.

In healthy tissues in vivo, the circadian clocks of individual cells are entrained and
oscillating together, which allows bulk measurements to contain robust circadian signals.
Consequently, the loss of a circadian signature in human tumors could result from
dysfunction in either entrainment, the oscillator, or both. Dysfunction in entrainment
would imply that the clocks in at least some of the cancer cells are out of sync with
each other and therefore free running, i.e., ignoring zeitgeber signals. Dysfunction in
the oscillator would imply that the clocks in at least some of the cancer cells are no
longer progressing normally. Given the current data, in which expression values are the
averages across many cells, these scenarios cannot be distinguished. However, the moderate
correlation between 1CCD and tumor purity across cancer types leads us to speculate
that the clocks in stromal and/or infiltrating immune cells may be progressing normally.
Notably, if clock gene co-expression in tumors were normal, then the moderate increases
in expression variability of clock genes could imply rhythms (synchronized across the
tumor) of increased amplitude. Because clock gene co-expression in tumors is strongly
perturbed, however, we find this scenario unlikely. We find it more likely that increased
gene expression variability in tumors is a result of non-circadian sources of variation,
e.g., tumor grade and subtype. In the future, the specific mechanisms of perturbed clock
progression may be unraveled through a combination of mathematical modeling (Kim
& Forger, 2012; Lück et al., 2014) and single-cell measurements. A separate matter not
addressed here is how cancer influences circadian rhythms in the rest of the body (Masri et
al., 2016), which may be relevant for optimizing the daily timing of anticancer treatments
(Dulong et al., 2015).

An apparent contradiction to perturbed clock progression in tumors is the presence
of normal rhythms in U2OS cells (which are derived from an osteosarcoma) and some
other cancer cell lines (Relógio et al., 2014), as well as in human and mouse glioblastoma
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cells in vitro (Slat et al., 2017). One explanation for this contradiction is that there could be
a critical difference, in terms of circadian clock progression, between tumors in vivo and
cancer cells in vitro. If so, we would speculate that the dysregulation of clock progression
in some human tumors may, under certain conditions, be reversible.

Based on this study alone, which is observational, it is not possible to determine the
direction of causality between tumor development and clock dysregulation, or to determine
whether clock dysregulation provides a selective advantage. Indeed, perturbations to co-
expression in cancer are not limited to clock genes or to rhythmic genes, as previous work
has found changes in co-expression and connectivity across the transcriptome (West et
al., 2012; Anglani et al., 2014). However, given the clock’s established role in regulating
metabolism and a recent finding that stimulation of the clock inhibits tumor growth in
melanoma (Kiessling et al., 2017), our findings raise the possibility that clock dysregulation
and manipulation of normal circadian physiology may be a cancer driver in multiple solid
tissues. On the other hand, a functional circadian clock seems to be required for growth
of acute myeloid leukemia cells (Puram et al., 2016), so further work is necessary to clarify
this issue.

CONCLUSIONS
Although the effect of restoring normal clock progression remains to be tested at the
pre-clinical and clinical stages, our findings raise the conjecture that this could be a viable
treatment strategy in a wide range of cancer types. Recent work on the effects of natural
light exposure (Stothard et al., 2017) and time-restricted feeding (Hatori et al., 2012; Chaix
et al., 2014) suggests that such a treatment strategy would not necessarily have to be
pharmacological. Finally, given the practical challenges of studying circadian rhythms at
the cellular level in humans, our method offers the possibility to infer clock progression in
diverse human phenotypes using publicly available transcriptome data.
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