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BACKGROUND: Exposure to drugs of abuse is frequently
assessed using urine drug screening (UDS) immunoas-
says. Although fast and relatively inexpensive, UDS as-
says often cross-react with unrelated compounds, which
can lead to false-positive results and impair patient care.
The current process of identifying cross-reactivity relies
largely on case reports, making it sporadic and inefficient,
and rendering knowledge of cross-reactivity incomplete.
Here, we present a systematic approach to discover cross-
reactive substances using data from electronic health re-
cords (EHRs).

METHODS: Using our institution’s EHR data, we assem-
bled a data set of 698651 UDS results across 10 assays
and linked each UDS result to the corresponding indi-
vidual’s previous medication exposures. We hypothesized
that exposure to a cross-reactive ingredient would increase
the odds of a false-positive screen. For 2201 assay–
ingredient pairs, we quantified potential cross-reactivity as
an odds ratio from logistic regression. We then evaluated
cross-reactivity experimentally by spiking the ingredient
or its metabolite into drug-free urine and testing the
spiked samples on each assay.

RESULTS: Our approach recovered multiple known cross-
reactivities. After accounting for concurrent exposures to
multiple ingredients, we selected 18 compounds (13 par-
ent drugs and 5 metabolites) to evaluate experimentally.
We validated 12 of 13 tested assay–ingredient pairs ex-
pected to show cross-reactivity by our analysis, discover-
ing previously unknown cross-reactivities affecting assays
for amphetamines, buprenorphine, cannabinoids, and
methadone.

CONCLUSIONS: Our findings can help laboratorians and
providers interpret presumptive positive UDS results.
Our data-driven approach can serve as a model for high-

throughput discovery of substances that interfere with
laboratory tests.
© 2019 American Association for Clinical Chemistry

Urine drug screening (UDS)3 immunoassays are one of
the primary methods to assess exposure to drugs of abuse.
Although UDS assays are fast, simple, and relatively in-
expensive, they often cross-react with compounds they
were not designed to detect. This cross-reactivity can
cause the screen to be presumptive positive in the absence
of the target drug, and is one reason presumptive positive
results should be confirmed by a more specific technique,
such as LC-MS/MS. However, many clinical laboratories
do not perform their own confirmatory testing, and even
if they do, results are generally not available until several
days later. Consequently, patient care decisions (e.g., in
emergent situations) may be made on the basis of the
screen alone. False-positive screens can lead providers to
make incorrect assumptions about drug exposure and
damage the relationship between provider and patient. A
comprehensive list of which compounds cross-react on
which UDS immunoassays could markedly improve the
reliability of UDS results and thereby improve patient
care.

Currently, the identification of new cross-
reactivities relies largely on false-positive screens catch-
ing the attention of a laboratorian, who may then check
for drugs in common on the patients’ medication lists
and decide which drug(s) to test for cross-reactivity ex-
perimentally (1 ). This case-based approach is inefficient
and unlikely to identify cross-reactivity of infrequently
used medications. Efforts involving more comprehensive
chart review have focused on estimating the frequency of
false-positive screens caused by known cross-reactants,
not on discovering and validating new ones (2–4). An
approach based on analysis by high-resolution mass spec-
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trometry has shown promise on a small scale (5 ) but is
labor- and cost-intensive and limited by the completeness
of compound databases. Computational approaches
based on molecular similarity (6, 7 ) suffer from the lim-
itation that some cross-reactants are not structurally sim-
ilar to the assay’s target compound (1, 8 ). Thus, many
cross-reactivities likely remain unknown.

An increasingly valuable resource for biomedical dis-
covery is the electronic health record (EHR), which doc-
uments the course of each patient’s clinical care. Large-
scale analyses of EHR data have revealed associations
between treatments and outcomes or adverse events (9–
11), as well as drug–drug interactions (12 ). Although
EHR data are observational, making causal inference a
challenge (13, 14 ), evidence from large-scale analyses can
help prioritize hypotheses for further investigation
(12, 15 ).

In this study, we sought to identify cross-reactive
substances based on statistical analysis of EHR data. We
combined �5 years’ worth of UDS results and docu-
mented drug exposures to quantify the potential cross-
reactivity of hundreds of drugs on 10 screening assays at
our institution. We then validated the cross-reactivity of
selected compounds experimentally.

Materials and Methods

Code and summary-level data for this study are available
at https://doi.org/10.6084/m9.figshare.8079944. Access
to individual-level EHR data was restricted by the Insti-
tutional Review Board (IRB). The Vanderbilt IRB re-
viewed and approved this study as nonhuman subjects
research (IRB nos. 081418 and 190165).

EXTRACTION OF UDS RESULTS AND DRUG EXPOSURES FROM

EHR DATA

We extracted EHR data from the Synthetic Derivative
(SD), a database of deidentified clinical data from Van-
derbilt University Medical Center (16 ) that is formatted
according to the Observational Medical Outcomes Part-
nership (OMOP) Common Data Model (17 ). As part of
the deidentification process to create the SD, dates are
shifted backward by a number of days between 0 and
364. The date shift is constant for all events related to a
given person, but varies from person to person. We ex-
tracted results for UDSs and corresponding confirma-
tions in the SD dated September 21, 2013 or later, to
ensure that all UDS results in our data set were collected
after Vanderbilt University Medical Center began using
the screening assays currently in use. Although the screen
result becomes available in the medical record before the
corresponding confirmation result, the two results ulti-
mately receive the same timestamp in the SD. Therefore,
we used the timestamp to link screen and confirmation
results for a given urine sample from a given person.

At our institution, samples with a presumptively
positive UDS result are reflexively sent for confirmatory
testing (assuming adequate sample volume), but physi-
cians can also directly order confirmatory testing with or
without a UDS panel. We included only UDS results in
which the sample (a) screened negative and was not sent
for confirmatory testing, (b) screened presumptive posi-
tive and confirmed negative (which we called a false pos-
itive), or (c) screened presumptive positive and confirmed
positive (which we called a true positive). We excluded
results in which the sample confirmed positive and either
was not screened or screened negative.

The confirmation assays were based on GC-MS
(opiates, oxycodone, amphetamines, barbiturates, meth-
adone, cannabinoids, cocaine, and tricyclic antidepres-
sants) or LC-MS/MS (benzodiazepines and buprenor-
phine). All drug screen results and most confirmation
results were qualitative. All quantitative results were from
confirmation assays related to the buprenorphine screen:
buprenorphine, buprenorphine-glucuronide, norbu-
prenorphine, and norbuprenorphine-glucuronide. For
those assays, we considered the confirmation for a given
sample positive if the result from at least 1 of the 4 assays
was numeric (indicating a measured concentration above
the cutoff) or included the string “positive,” and negative
if the results from all 4 assays started with “�” (indicating
a measured concentration less than the cutoff) or in-
cluded the string “negative.”

In general, not every screening assay target is in-
cluded in the confirmation panels. In addition, the con-
firmation is in some cases only marginally more analyti-
cally sensitive than the screen. In the case of tricyclic
antidepressants, the screen detects parent drugs as well as
active metabolites. Thus, the total amount of detected
compounds in a sample could meet the cutoff for a pos-
itive screen even if no compound individually meets the
cutoff for a positive confirmation, which would lead to an
apparent false-positive result.

For each person in the data set, we identified drug
exposures documented between 1 and 30 days before
each UDS result. We excluded UDS results that occurred
�30 days after the person’s first ever visit at Vanderbilt
University Medical Center because we would lack a pre-
vious 30 days of documented drug exposures. Docu-
mented drug exposures are available as structured data in
the SD and come primarily from medication lists, but
also from physician-administered drugs, prescriptions
written, Current Procedural Terminology (CPT) codes
corresponding to drugs, inpatient administrations, pre-
scriptions dispensed in pharmacy, and patient self-
reports. Exposures from patient self-reports (which are
contained in problem lists) and medication lists were pre-
viously extracted into the OMOP-structured data using a
validated algorithm called MedEx (18 ). We mapped
each drug to its active ingredient(s) using RxNorm (19 ),
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creating a list of the distinct ingredients to which a person
was exposed in the 30-day period before providing the
urine sample.

We did not limit the drug exposures to any particu-
lar type, e.g., inpatient administrations. We also did not
verify that drugs documented in medication lists were
actually taken or that prescriptions written were actually
filled (e.g., by an outpatient pharmacy) and then taken
because these data do not exist. Furthermore, the date on
which the exposure is documented does not necessarily
correspond to the date(s) on which a person has actually
been exposed (e.g., for medication lists that are updated
during outpatient encounters or outpatient prescription
orders). In addition, the vast majority of documented
drug exposures lack information for dose, quantity, and
refills. Thus, having a documented exposure within 30
days is only a proxy for being exposed at the time of the
UDS.

STATISTICAL ANALYSIS OF UDS RESULTS AND DRUG

EXPOSURES

To quantify associations between ingredients and false-
positive screens, we used logistic regression. For an assay–
ingredient pair, we fit a logistic regression model in which
the dependent variable corresponded to the UDS result
(negative or false positive) and the independent variable
corresponded to presence or absence of previous exposure
to the ingredient. We fit each model using Firth’s
method, which reduces bias in maximum likelihood es-
timates and is especially apt for rare events (20, 21 ). We
used the resulting coefficient to calculate an odds ratio
(equal to the exponentiated coefficient), and used the
95% CI based on the penalized profile likelihood. An
odds ratio of 2 meant that the odds of a false-positive
screen (as opposed to a negative screen) on that assay
doubled if the person had a documented exposure to that
ingredient between 1 and 30 days previously. We fit a
model for an assay–ingredient pair only if at least 5 indi-
viduals exposed to the ingredient had a false-positive
screen on the assay. We quantified associations between
ingredients and true-positive screens in the same way.

The large size of our data set caused small effects to
become highly statistically significant. Therefore, al-
though Firth logistic regression provides a P value for
each model coefficient, we focused on the ingredients
with the strongest effects by sorting on the lower bound
of the 95% CI of the odds ratio.

For the ingredients most strongly associated with
false-positive results on a screening assay, we calculated
the percentage of exposures to one ingredient for which
the person was also exposed to a second ingredient. We
considered only exposures preceding negative and false-
positive screens. To distinguish the effects of concurrent
exposure to multiple ingredients, we added terms to the

logistic regression model that corresponded to each indi-
vidual ingredient and all pairwise interactions.

We defined known cross-reactants as substances
whose cross-reactivity was (a) described in the package
insert for the screening assay or (b) validated in a scientific
publication for any screening assay designed to recognize
the same drug(s).

EXPERIMENTAL VALIDATION OF CROSS-REACTIVITY

We evaluated each compound’s cross-reactivity by spik-
ing a reference standard into drug-free urine at various
concentrations and testing the spiked urine samples in
singlicate on the panel of 10 screening assays on an Ab-
bott Architect c16000 chemistry analyzer. The bu-
prenorphine assay was a cloned enzyme donor immuno-
assay with detection at 660 nm. All other assays were
homogeneous enzyme immunoassays with detection at
340 nm (Table 1). We considered a compound’s cross-
reactivity on an assay validated if the concentration of
target drug registered by the assay ever reached the cutoff
used to call a UDS result presumptive positive. We used
linear interpolation to estimate the concentration of the
test compound at which the assay registered a concentra-
tion equal to the cutoff.

We purchased reference standards from Sigma-
Aldrich, MedChemExpress, Toronto Research Chemi-
cals, and LGC Standards. We prepared stock solutions of
each standard in saline when possible, or in methanol
when solubility in saline was negligible. We spiked the
urine samples using a fixed volume of 20% spiking solu-
tion made of a combination of diluent and stock solu-
tion, including one sample per compound with only di-
luent to serve as a negative control. In most cases, we
tested the maximum technically feasible concentration
for a compound, given the limits of solubility, the con-
centration of the reference material, and the fixed 20%
spiking volume.

Results

BUILDING A DATA SET OF UDS RESULTS AND DRUG

EXPOSURES

We first assembled a data set of UDSs and confirmations
performed since our institution implemented the screen-
ing assays currently in use. Our data set contained
698651 UDS results for 10 assays and 40741 individuals
(Table 1). The false-positive rates of the assays (percent of
presumptive positive screens that confirmed negative)
varied from 0% to 43%. The highest false-positive rates
came from the assays for amphetamines, buprenorphine,
and tricyclic antidepressants.

We next added to our data set, for each person, all
documented drug exposures occurring between 1 and
30 days before a UDS result. Our data set included
exposures to 2027 ingredients. Each UDS result was
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preceded by exposure to a median of 3 ingredients (see
Fig. 1 in the online Data Supplement), and the median
number of UDS results preceded by exposure to a
specific ingredient was 190 (see Table 1 in the online
Data Supplement).

QUANTIFYING ASSOCIATIONS BETWEEN UDS RESULTS AND

DRUG EXPOSURES

We hypothesized that exposure to a cross-reactive ingre-
dient would increase the odds of a false-positive screen.
To quantify the association between exposures to an in-
gredient and false-positive results on a screening assay, we
used logistic regression to calculate an odds ratio (which
we call ORFP) and 95% CI. We used the same approach
to quantify associations between ingredient exposures

and true-positive screens (for which we call the odds ratio
ORTP), which we hypothesized would identify assay tar-
gets. Altogether, we calculated ORFP for 2201 assay–
ingredient pairs (see Table 2 in the online Data Supple-
ment) and ORTP for 6464 assay–ingredient pairs (see
Table 3 in the online Data Supplement).

To validate our data and approach, we examined the
odds ratios (for false-positive screens, ORFP; for true-
positive screens, ORTP) of known cross-reactants and tar-
gets for each screening assay (Fig. 1). Known cross-
reactants generally had among the highest ORFP for a
given assay and were either not tested for association with
true-positive results or had ORFP � ORTP. In addition,
assay targets generally had the highest ORTP and were
either not tested for association with false-positive find-

Opiates Oxycodone Tricylic antidepressants

Buprenorphine Cannabinoids Methadone

Amphetamines Barbiturates Benzodiazepines

NA −2 0 2 NA −2 0 2 4 NA −2 0 2 4

NA −2 0 2 4 NA −2 0 2 4 NA −2 0 2 4 6 8

NA −2 0 2 4 6 NA −2 0 2 4 NA −2 0 2 4 6 8 10
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−2

0
2
4
6
8

NA

−2
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log2 (odds ratio for false positives)

lo
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 (o
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si
tiv

es
)

Ingredient category
Assay target

Known cross−reactant

Neither

Fig. 1. Establishing validity of the data and approach.
Each plot corresponds to a screening assay, and each point corresponds to an ingredient. A log2 (odds ratio) of NA indicates that the association
was not tested, as <5 individuals had a false-positive (NA on x axis) or true-positive (NA on y axis) UDS result preceded by exposure to the given
ingredient. The green triangle in the upper right of the benzodiazepines plot corresponds to clobazam, which is detected by the screen but not
by the confirmation. See Materials and Methods for an explanation of why some other assay targets (e.g., several tricyclic antidepressants) had
increased odds ratios for false-positive screens.
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ings or had ORFP � ORTP. One exception was cloba-
zam, which had ORFP � ORTP for the benzodiazepines
screen, consistent with the fact that clobazam is detected
by the screening assay, but not by our institution’s ben-
zodiazepine confirmation assay (thus leading to apparent
false-positive results). Taken together, these findings in-
dicate that our approach captures the effects of drug ex-
posure on UDS results, and that ORFP is a metric for
potential cross-reactivity.

To focus on the ingredients with the strongest evi-
dence for cross-reactivity, we ranked the associations for
each screening assay by the lower bound of the 95% CI of
ORFP. The top-ranked ingredients included known
cross-reactants and assay targets, but also substances
whose cross-reactivity had not previously been described
(Table 2). Defining ingredient exposures based on the
previous 15 days or 60 days, instead of 30 days, gave very
similar results (see Tables 4 and 5 in the online Data
Supplement).

We reasoned that an ingredient that did not cross-
react on a particular assay could still be associated with
false-positive screens if individuals exposed to that ingre-
dient were frequently exposed to another ingredient that

did cross-react. To investigate this possibility, we calcu-
lated the coexposure frequency: the percentage of UDS
results preceded by exposure to one ingredient that were
also preceded by exposure to a second ingredient (see Fig.
2 in the online Data Supplement). Many ingredients pre-
viously not known to be cross-reactive had a low coexpo-
sure frequency with known cross-reactants and assay tar-
gets, providing additional evidence that these substances
are true cross-reactants.

Several top-ranked ingredients on the buprenor-
phine screen (including cytarabine) had a high coex-
posure frequency with the known cross-reactant
levofloxacin (8 ). To revise our estimate of potential
cross-reactivity of each of these ingredients, we ex-
tended the logistic regression model to account for
levofloxacin exposure. This adjustment tended to re-
sult in a smaller ORFP and a wider 95% CI that
spanned ORFP � 1 (see Fig. 3 in the online Data
Supplement), suggesting that these substances were
unlikely to be cross-reactive on their own. In addition,
we could not distinguish the potential cross-reactivity
of sulfamethoxazole and trimethoprim because the

Table 2. Top-ranked ingredients associated with false positives on the amphetamines and buprenorphine screens.a

Screening assay Ingredient Odds ratio

95% CI

Exposure frequency Previous statusLower Upper

Amphetamines Ceftaroline 73.8 37.4 150.4 4.8�10−4 Unknown

Ceftaroline fosamil 52.5 23.4 119.0 3.4�10−4 Unknown

Procainamide 69.5 21.0 251.2 1.5�10−4 Unknown

Imatinib 17.0 10.0 27.7 1.1�10−3 Unknown

Methyldopa 15.2 9.2 24.4 1.3�10−3 Unknown

Esmolol 10.7 6.1 17.8 1.3�10−3 Unknown

Mexiletine 10.9 5.6 19.5 9.8�10−4 Cross-reactant

Trazodone 6.0 5.2 6.8 4.6�10−2 Cross-reactant

Dextroamphetamine 5.2 3.6 7.3 5.6�10−3 Assay target

Amphetamine 5.0 3.5 7.0 5.6�10−3 Assay target

Buprenorphine Methoxsalen 34.5 13.9 87.9 2.8�10−4 Unknown

Hydroxychloroquine 14.1 11.2 17.5 5.7�10−3 Cross-reactant

Propafenone 15.1 8.1 27.2 7.2�10−4 Unknown

Rotigotine 21.3 7.3 59.1 2.2�10−4 Unknown

Levofloxacin 8.0 7.1 9.1 2.9�10−2 Cross-reactant

Cytarabine 9.2 6.9 12.3 3.9�10−3 Unknown

Decitabine 11.8 6.6 20.3 9.0�10−4 Unknown

Belimumab 15.5 6.0 37.0 3.1�10−4 Unknown

Posaconazole 9.5 5.2 16.6 9.3�10−4 Unknown

Sulfamethoxazole 6.0 5.2 6.9 2.5�10−2 Unknown

a Ingredients are sorted by lower bound of the 95% CI of the odds ratio (ORFP). All tested associations for all screening assays are in Table 2 of the online Data Supplement.
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two ingredients had coexposure frequencies with each
other near 100%.

VALIDATING PREDICTED CROSS-REACTIVITY EXPERIMENTALLY

To test the hypotheses raised by this analysis, we experi-
mentally evaluated the cross-reactivity of 18 compounds
(13 parent drugs and 5 metabolites). Overall, we vali-
dated the cross-reactivity of 15 assay–ingredient pairs (in
which the ingredient’s cross-reactivity could be due to the
parent drug or a metabolite), including 12 of 13 tested
pairs for which cross-reactivity was expected based on our
analysis (Fig. 2 and Table 3 here and also Table 6 in the
online Data Supplement). Only donepezil (and its me-
tabolite 6-o-desmethyldonepezil) on the amphetamines
screen failed to show sufficient cross-reactivity to cause a
presumptive positive at the concentrations tested. Trim-
ethoprim, but not sulfamethoxazole, cross-reacted on the
buprenorphine screen. As expected, cytarabine did not
cross-react on the buprenorphine screen. Furthermore,
most metabolites showed similar cross-reactivity profiles
to their respective parent drugs, with one exception:
�-Methyldopamine (a metabolite of methyldopa) cross-
reacted on the amphetamines screen, although methyl-
dopa itself and another metabolite, 3-o-methyldopa, did
not. Altogether, the newly discovered cross-reactivities
affect the screening assays for amphetamines, buprenor-
phine, cannabinoids, and methadone.

Four ingredients were cross-reactive on multiple as-
says: ceftaroline fosamil and procainamide on the
amphetamines and buprenorphine screens, rotigotine on

the buprenorphine and cannabinoid screens, and
propafenone on the buprenorphine and methadone
screens. The cross-reactivity of procainamide on the bu-
prenorphine screen and rotigotine on the cannabinoid
screen was unexpected because, owing to low numbers of
UDS results, we had not quantified the associations. For
the same reason, we had not calculated ORFP of ceftaro-
line fosamil (a prodrug) on the buprenorphine screen,
although ORFP of ceftaroline (the active metabolite) was
in the top 20.

To estimate how many false-positive screens on a
particular assay could be explained by various ingredi-
ents, we calculated the percentage of false-positive screens
preceded by exposure to an assay target, known cross-
reactant, or newly identified cross-reactant (Fig. 3A). Al-
together, these ingredients could explain between 5.3%
and 52.6% of false-positive screens in our data set, de-
pending on the assay (Fig. 3B).

Discussion

Although the issue of cross-reactivity in UDS assays is
well known, the identification of new cross-reactivities
has relied on serendipity, making it sporadic and ineffi-
cient. We developed and validated an approach to sys-
tematically discover cross-reactivity using large-scale
analysis of EHR data. Our approach also enabled com-
prehensive estimates of the fraction of false-positive
screens explained by exposure to various ingredients.
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Our data-driven approach produces hypotheses
about cross-reactivity based on statistical associations. A
strong association means the probability of a false-
positive screen is increased by previous exposure to a
given ingredient, but does not necessarily mean the false-
positive screen is caused by the ingredient itself. One
alternative possibility is that the association is due to a
metabolite, as we found on the amphetamines screen
with methyldopa. A second possibility is that the associ-
ation is spurious and caused by coexposures with another
ingredient that is cross-reactive, as we found on the bu-
prenorphine screen with cytarabine. To be considered
conclusive, the hypotheses raised by our approach should
be validated experimentally.

Our findings suggest that the sources of many false-
positive UDS results remain to be discovered. In the fu-
ture, it may be possible to refine statistical associations
from EHR data by leveraging structural or pharmacolog-

ical similarity (6, 7 ) or knowledge of shared metabolites.
Future work could also explore the likely scenario that
some false-positive results are caused by multiple cross-
reactive drugs.

The large size of our data set allowed us to discover
ingredients that, although infrequently used, are strongly
cross-reactive. However, because our approach relies on
exposures documented in the EHR (e.g., in the medica-
tion list), it is likely less sensitive to cross-reactivity of
drugs that are typically taken over-the-counter, especially
if they are taken for only a short time and not reported to
a provider. In addition, because our approach considers
all documented exposures to a given drug, cross-reactivity
caused by rare cases of overdose may be masked by a lack
of cross-reactivity under typical dosing.

To assess cross-reactivity efficiently, we chose a wide
concentration range for spiking each compound in urine
(in most cases, up to the maximum technically feasible

Table 3. Experimental validation of cross-reactivity, including parent drugs and metabolites.a

Screening assay Compound tested Parent drug

Concentration causing a
presumptive positive,

μg/mL

Amphetamines �-Methyldopamine Methyldopa 13.6

Procainamide — 23.2

Ceftaroline fosamil — 53.1

N-acetyl-3-hydroxyprocainamide Procainamide 92.2

Imatinib — 216.6

Esmolol — 237.3

Esmolol acid Esmolol 446.4

Methyldopa — NA

3-o-Methyldopa Methyldopa NA

Donepezil — NA

6-o-Desmethyldonepezil Donepezil NA

Buprenorphine Rotigotine — 0.13

Trimethoprim — 47.2

Procainamide — 92.8

N-acetyl-3-hydroxyprocainamide Procainamide 126.2

Propafenone — 180.7

Ceftaroline fosamil — 681.5

Donepezil — 709.6

Sulfamethoxazole — NA

Cytarabine — NA

Cannabinoids Raltegravir — 339.5

Rotigotine — 415.1

Methadone Propafenone — 83.2

Pazopanib — 198.4

a NA indicates the compound was not sufficiently cross-reactive to cause a presumptive positive on the given screening assay at the concentrations tested. Cytarabine was not expected
to be cross-reactive. In addition, based on the EHR data analysis, the potential cross-reactivity of trimethoprim and sulfamethoxazole could not be distinguished.
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concentration). For some compounds, the tested concen-
trations are well within the range expected with standard
dosing (22–24). For others, either the concentration
required to produce a presumptive positive result is
higher than would be expected with standard dosing or
the expected concentration range in urine is not well
established (25–30 ). Regardless, the combination of
(a) empirical association between false-positive screens
and previous ingredient exposure (not explained by
coexposures) and (b) experimental validation of cross-
reactivity provides strong evidence that exposure to
the ingredient is causal for some fraction of false-
positive screens.

We envision multiple future applications of our
work. First, because our institution’s EHR data are made
available to IRB-approved researchers in a standard for-

mat called OMOP (17 ), it should be possible to apply
our approach to OMOP-formatted EHR data from
other institutions that may use different screening assays.
Second, rather than being a one-time analysis, our ap-
proach can be applied on an ongoing basis as evidence for
existing drug accumulates and as new drugs and assays
become available. Such postmarketing surveillance could
guide analytical specificity testing in assay development.
Finally, to achieve the promise of a learning health system
(31 ), growing knowledge of cross-reactivity must be in-
corporated into the EHR so that a patient’s recent drug
exposures can be used to automatically inform providers
when a false-positive screen is likely, even before a con-
firmation result is available. This could improve patient
care in emergent or other situations in which UDS results
directly influence clinical decisions.
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