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Abstract

Point-of-care (POC) urine drug screening (UDS) assays provide immediate information for patient
management. However, POC UDS assays can produce false-positive results, which may not be
recognized until confirmatory testing is completed several days later. To minimize the potential for
patient harm, it is critical to identify sources of interference. Here, we applied an approach based
on statistical analysis of electronic health record (EHR) data to identify medications that may cause
false positives on POCUDS assays. From our institution’s EHR data, we extracted 120,670 POCUDS
and confirmation results, covering 12 classes of target drugs, along with each individual’s prior
medication exposures. Our approach is based on the idea that exposure to an interfering medica-
tion will increase the odds of a false-positive UDS result. For a given assay–medication pair, we
quantified the association between medication exposures and UDS results as an odds ratio from
logistic regression. We evaluated interference experimentally by spiking compounds into drug-free
urine and testing the spiked samples on the POC device. Our dataset included 446 false-positive
UDS results (presumptive positive screen followed by negative confirmation). We quantified the
odds ratio of false positives for 528 assay–medication pairs. Of the six assay–medication pairs
we evaluated experimentally, two showed interference capable of producing a presumptive pos-
itive: labetalol on the 3,4-methylenedioxymethamphetamine (MDMA) assay (at 200 µg/mL) and
ranitidine on the methamphetamine assay (at 50 µg/mL). Ranitidine also produced a presumptive
positive for opiates at 1,600 µg/mL and for propoxyphene at 800 µg/mL. These findings highlight
the generalizability and the limits of our approach to use EHR data to identify medications that
interfere with clinical immunoassays.

Introduction

Urine drug screens are commonly based on immunoassays, which
are sensitive and cost-effective. As with nearly any laboratory test,
however, immunoassays are susceptible to interference by medica-
tions, vitamins and other substances. Because many UDS assays
are designed to recognize multiple related substances, they may be
particularly susceptible to interference from structurally similar com-
pounds (1). Due to these assays’ relatively low specificity, positive

UDS results are considered presumptive. Distinguishing between
true-positive and false-positive UDS results requires confirmatory
testing based on mass spectrometry.

Point-of-care (POC) UDS immunoassays are designed to be
used at or near the site of patient care, which enables immedi-
ate incorporation of the results into patient management. Like
the immunoassays performed in a clinical laboratory, POC UDS
assays are susceptible to interference from medications. However,
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by definition, POC UDS results are routinely acted on before con-
firmation results are available, and providers are often cautioned
about possible interferences and false positives. To educate providers
and minimize the potential for patient harm, many laboratories
compile lists of interfering substances based on the information
from the manufacturer, scientific literature and experience. Unfor-
tunately, these lists tend to be limited in scope, suggesting that many
sources of interference remain unknown and many spurious results
go unnoticed.

We recently developed and validated an approach, based on
statistical analysis of electronic health record (EHR) data, to iden-
tify medications that interfere with laboratory-based UDS assays
(2, 3). Here, we adapted the approach to search for medications that
interfere with POC UDS assays. Our analysis used >120,000 POC
UDS results generated over a 5-year period. We then experimentally
validated the predicted interferences through spiking studies.

Methods

The Vanderbilt Institutional Review Board reviewed and approved
this study as nonhuman subject research (IRB# 081418 and 190165).

Extraction of POC UDS results and medication
exposures from EHR data
EHR data came from the Synthetic Derivative, a collection of dei-
dentified clinical data from Vanderbilt University Medical Center
(VUMC) (4). We collected UDS results from our institution’s POC
device (Integrated E-Z Split Key Cup II, Alere, San Diego, CA) and
the corresponding reflexed confirmation results. The confirmation
assays are laboratory-developed tests based on gas chromatog-
raphy mass spectrometry (amphetamine, barbiturates, cannabi-
noids, cocaine metabolite, 3,4-methylenedioxymethamphetamine
(MDMA), methadone, methamphetamine, opiates, oxycodone and
propoxyphene) or liquid chromatography tandem mass spectrom-
etry (benzodiazepines and buprenorphine). They are performed in
accordance with the College of American Pathologists’ criteria and
are in routine clinical use.

For each person in the dataset, we identified medication expo-
sures documented between 1 and 30 days prior to each UDS result.
We excluded UDS results that occurred <30 days after the person’s
first ever visit at VUMC, since we would lack a prior 30 days of
documented drug exposures. Medication exposures are available as
structured data in the Synthetic Derivative and come primarily from
medication lists. We mapped each medication to its active ingredi-
ent(s), which include prodrugs, using RxNorm (5). For simplicity,
we refer to these active ingredients as medications in the rest of the
manuscript.

As described previously, having a documented exposure within
30 days is only a proxy for being exposed at the time of providing the
urine sample (2). For example, even if a person is taking amedication
every day, the medication list is only updated when the person visits a
health-care provider. Thus, the proxy is valid even if the medication’s
half-life is <30 days. As this is a retrospective analysis from EHR
data, it is impossible to verify the presence of every medication in
every patient sample.

Statistical analysis of medication exposures and UDS
results
We quantified associations between medication exposures and UDS
results using Firth’s logistic regression (6, 7). Given the coefficients
and standard errors from the regression fits (where each coefficient

corresponded to a log odds ratio), we then used an Empirical Bayes
approach called adaptive shrinkage (8) to estimate the posterior
mean of the log odds ratio and the corresponding 95% credible
interval for each assay–medication pair. In each regression model,
the independent variable corresponded to the presence or absence of
prior documented exposure to the medication. The dependent vari-
able corresponded to the UDS result: negative or false positive for
the odds ratio of false positives, ORFP, and negative or true positive
for the odds ratio of true positives, ORTP.

Although our analysis did not explicitly account for which results
were from which individuals, we only fit a model for an assay–
medication pair if exposure to the medication preceded a false
positive (for ORFP) or true positive (for ORTP) on the assay in at
least two individuals. To distinguish the effects of concurrent expo-
sure to multiple medications, we fit a logistic regression model with a
term for each medication of interest. We defined known interferents
as substances able to cause a presumptive positive according to the
assay’s package insert.

Experimental validation of interference
For each selected compound, we spiked a reference standard into
drug-free urine at various concentrations and tested the spiked urine
samples in the POC device. We purchased reference standards from
Sigma-Aldrich (Milwaukee, WI), Tocris Biosciences (Bristol, UK)
and Santa Cruz Biotechnology (Dallas, TX).We prepared stock solu-
tions of each standard in 80% dimethyl sulfoxide (DMSO) in water
(labetalol, meloxicam and ranitidine), 100% DMSO (5′-carboxy
meloxicam), 80%methanol in water (prazosin) and 100%methanol
(furosemide). We spiked the urine samples using a fixed volume of
20% spiking solution, made of a combination of diluent and stock
solution, including one sample per compound with only diluent to
serve as a negative control. In most cases, we tested up to the max-
imum technically feasible concentration for a compound, given the
limits of solubility, the concentration of the reference material and
the fixed 20% spiking volume. We performed positive controls using
Liquicheck Urine Toxicology Control Level C4 (Bio-Rad, Hercules,
CA) and high calibrators from Immunalysis (Pomona, CA). The POC
assays provide qualitative results that are interpreted visually.

Results

Using our institution’s deidentified EHR data (4), we assembled a
dataset of UDS and reflexed confirmation results related to our insti-
tution’s POC device, which includes immunoassays for 12 classes
of target drugs (Table I). The dataset included 120,670 UDS results
from 1,163 individuals (mean: 10.2 results per individual per assay),
along with each individual’s prior documented medication expo-
sures. If a presumptive positive UDS result was accompanied by a
positive or negative confirmation, we denoted it as a true positive or
false positive, respectively. The highest true-positive rate occurred
with the buprenorphine assay, consistent with the POC device’s use
in our institution’s medication-assisted treatment program.

We used the dataset to calculate two types of associations:
(i) between medication exposures and false-positive UDS results,
yielding an odds ratio ORFP and (ii) between medication exposures
and true-positive UDS results, yielding an odds ratio ORTP. As in
our previous study (2), we hypothesized that ORFP would identify
potential interferents on a given assay and that ORTP would identify
assay targets, thereby serving as a positive control. Altogether, we
calculated ORFP for 528 assay–medication pairs andORTP for 1,796
assay–medication pairs (Supplementary Tables 1 and 2). Because of
the relatively low counts of false-positive UDS results, we could only
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Table I. Characteristics of POC UDS Immunoassays in This Study

Number of UDS results

Target drug(s) Cutoff (ng/mL) Negative screen
Presumptive positive screen, positive
confirmation

Presumptive positive screen, negative
confirmation

Amphetamine 1,000 10,101 245 7
Barbiturates 300 10,530 6 5
Benzodiazepines 300 9,912 565 44
Buprenorphine 10 508 6,328 6
Cannabinoids 50 9,472 944 60
Cocaine metabolite 150 10,332 162 47
MDMA 500 9,987 23 59
Methadone 300 10,243 210 57
Methamphetamine 1,000 9,984 92 95
Opiates 300 9,598 491 49
Oxycodone 100 9,524 553 16
Propoxyphene 300 10,413 1 1

Table II. Strongest Associations with False-Positive UDS Results, Which Were Selected for Experimental Evaluation

Number of UDS results 95% credible interval

Assay Medication Negative True positive False positive Odds ratio (ORFP) Lower Upper

Concentrations causing
a presumptive positive
(µg/mL)

Cannabinoids Meloxicam 5 0 2 28.1 7.1 78.0 -a

Cannabinoids Furosemide 101 1 7 11.4 5.4 22.0 -
MDMA Labetalol 143 2 30 61.9 39.9 80.5 200
Methadone Labetalol 171 5 9 10.4 5.3 20.5 -
Methadone Prazosin 198 1 9 9.0 4.6 18.5 -
Methamphetamine Ranitidine 97 0 7 7.8 3.6 17.0 50

aNeither meloxicam nor 5′-carboxy meloxicam caused a presumptive positive.
Numbers of UDS results correspond to those preceded by exposure to the given medication. “-” indicates the compound did not cause a presumptive positive up to the highest
concentration tested (1,600 µg/mL for each compound except 800 µg/mL for the metabolite 5′-carboxy meloxicam).

calculate ORFP for one known interferent. However, most assay
targets had among the highest ORTP on their respective assay (Sup-
plementary Figure 1), indicating that our approach detects the effects
of drug exposure on POC UDS results.

Based on this analysis and on clinical plausibility we selected the
most promising potentially interfering medications for experimental
validation (Table II), although we expected that because of the low
numbers of false-positive UDS results, fewer selected medications
would actually produce a presumptive positive. We selected meloxi-
cam and furosemide for validation on the cannabinoids assay based
on multivariate regression (Supplementary Table 3).

Of the six assay–medication pairs we evaluated, two showed
interference capable of producing a presumptive positive, validat-
ing our analysis (Table II and Supplementary Figure 2): labetalol
on the MDMA assay (at 200 µg/mL) and ranitidine on the
methamphetamine assay (at 50 µg/mL). As incidental findings,
ranitidine also produced a presumptive positive for opiates at
1,600 µg/mL and for propoxyphene at 800 µg/mL. The other assay–
medication pairs did not produce a presumptive positive at any tested
concentration.

Discussion

Knowledge of substances that can cause spurious results is critical
for POC testing. Here, we applied a statistical approach to detect
sources of interference on POC UDS assays. Our approach relies on
data that are already collected for clinical care.

The current study shares multiple limitations with our previous
work that are inherent to analysis of EHR data. Our approach only
quantifies associations for assay–medication pairs; it does not predict
which medication(s) caused a particular UDS result. A documented
prior exposure to a medication does not guarantee that the individ-
ual was taking the medication at the time of providing the sample or
that the medication was present in the sample. In addition, because
medications are given for particular indications, documented expo-
sures to a medication could be correlated with other factors—some
recorded in the EHR, some not—affecting UDS results.

We also acknowledge limitations in our validation via spiking
experiments. First, drug concentration in urine is highly variable (due
to factors such as renal function, hydration status and concomitant
drugs) and often poorly characterized, which makes it challenging to
ascertain the physiological plausibility of the concentrations causing
presumptive positive screens. However, the combination of associ-
ation in EHR data and validation in spiking experiments strongly
suggests that urine concentrations of a given drug and/or metabolite
do become high enough to cause false-positive screens in clinical care.
Second, although we tested the drug metabolites that were commer-
cially available, it remains possible that some false positives in the
EHR data were caused by metabolites we could not test.

The current study also differs from our previous work on labo-
ratory analyzer-based assays in several ways (2). First, the current
dataset included∼6-fold fewer UDS results overall and∼16-fold
fewer false positives. The latter is at least partly because, compared
with the laboratory-based assays, the POC assays have higher cutoff
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concentrations for presumptive positives. Second, the current dataset
included∼35-fold fewer unique patients, since the POC device at
our institution is used primarily in outpatient medication-assisted
treatment clinics. All these factors likely contributed to why we iden-
tified fewer interfering medications in the current study than in the
previous study.

An important future step, especially relevant to POC testing, is
to integrate the knowledge of validated sources of interference into
the EHR so that providers are automatically notified when a result
may be spurious. Such a system could provide an explanation when
a patient’s samples repeatedly screen positive and confirm negative
and provide an impetus to forgo confirmatory testing in some sce-
narios. Overall, the repeated success of our approach supports its
generalizability and the broader potential for analysis of EHR data
to advance laboratory medicine.
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Data availability

Code and summary results for this study are available at https://
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Supplementary data is available at Journal of Analytical Toxicology
online.
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