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Abstract

Recent advances in genomic technology and widespread adoption of elec-
tronic health records (EHRs) have accelerated the development of genomic
medicine, bringing promising research findings from genome science into
clinical practice. Genomic and phenomic data, accrued across large popula-
tions through biobanks linked to EHRs, have enabled the study of genetic
variation at a phenome-wide scale. Through new quantitative techniques,
pleiotropy can be explored with phenome-wide association studies, the oc-
currence of common complex diseases can be predicted using the cumulative
influence of many genetic variants (polygenic risk scores), and undiagnosed
Mendelian syndromes can be identified using EHR-based phenotypic sig-
natures (phenotype risk scores). In this review, we trace the role of EHRs
from the development of genome-wide analytic techniques to translational
efforts to test these new interventions to the clinic.Throughout, we describe
the challenges that remain when combining EHRs with genetics to improve
clinical care.
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EHR: electronic
health record

PheWAS:
phenome-wide
association study

GWAS: genome-wide
association study

PheRS: phenotype
risk score

PRS: polygenic risk
score

INTRODUCTION

Genomic medicine is an emerging multidisciplinary specialty that aims to improve human health
through the application of genomic research findings to clinical care (63, 119). Arguably, it is
the component of precision medicine that is most salient to clinical practice, as it builds upon
the decades-long field of medical genetics and leverages well-established and increasingly afford-
able laboratory technologies to provide clinical-grade sequencing at the point of care. Genomic
medicine is distinguished from traditional genetics in that it considers the functions and inter-
actions of all genes in the genome (42). Thus, the field expands on the clinical model of using
pedigrees to inform the diagnosis and treatment of monogenic or Mendelian disease, creating a
model where polygenic effects address the hereditary components of common complex diseases,
enable targeted therapy, and improve understanding of the molecular basis for all disease.

One prominent example of this evolution is in the care of patients with breast cancer. For
several decades, physicians have modeled genetic susceptibility to breast cancer with BRCA1
and BRCA2 variants to characterize women’s predisposition to breast cancer incidence and
recurrence (7, 8). However, over the last 10 years, the use of genetic data has greatly expanded to
include panels of somatic and germline variants or indicators of gene expression to personalize
treatment. Patients with estrogen-dependent (ER+) or human epidermal growth factor receptor
2 (HER2) oncoprotein–expressing breast cancers in particular have benefited from treatment
de-escalation from chemotherapy to well-tolerated targeted therapy and hormonal prophylaxis
(62, 75). Precision medicine hopes to achieve similar gains across a wide spectrum of diseases.
The dramatic reduction in the cost of sequencing has enabled the study of genetic variation at
the population level; the rate-limiting resource is the availability of the large populations of
diverse, well-phenotyped individuals that are needed to unravel the associations between complex
disease and genomic variation.

It is not surprising, then, that central to the emergence of genomic medicine is the mar-
riage of genetic data to rich sources of phenotypic data, particularly comprehensive electronic
health records (EHRs) (1). In contrast to disease-specific cohorts, EHRs provide data on a
complete spectrum of human disease, treatment effects, and outcomes. EHRs are foundational
for phenome science, defined as the study of phenotypic characteristics across large populations
(Figure 1). Both genome science and phenome science have required the development of
large-scale analytic methods and resources to extract and organize vast amounts of data and
draw meaningful conclusions. The development of these techniques, including phenome-wide
association studies (PheWASs) (23, 24), genome-wide association studies (GWASs) (38, 43, 56,
74), and electronic phenotyping (e-phenotyping), is the subject of this review, along with the
derivative translational methods of phenotype risk scores (PheRSs) and polygenic risk scores
(PRSs), which are promising new interventions that may further influence clinical practice.

UTILIZING ELECTRONIC HEALTH RECORDS TO ENABLE
GENOMIC SCIENCE

EHRs, which were introduced more than 50 years ago (34, 69), did not gain substantial popularity
in the United States until 2007, when federal funding from the Health Information Technology
for Economic and Clinical Health (HITECH) Act (47) prompted rapid adoption. Within eight
years,more than 80% of federally incentivized hospitals had adopted EHRs, and clinical data for a
large majority of the US population (>95%) began accumulating (3); similar trends have occurred
in other countries that have implemented national record systems.

Since EHRs automate the collection of clinical data as they are generated, they provide a
unique opportunity to define disease incidence, trajectory, and outcomes across an entire health
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Figure 1

Advancing translational genomics relies on research across the genome and phenome. Progress relies both on enabling resources and
on analytic methods and tools to capitalize on those resources. Discovery research utilizing new technologies built off large-scale EHR
and genomic data has led to clinical translation and implementation and to eventual changes in clinical practice. Abbreviations: EHR,
electronic health record; e-phenotyping, electronic phenotyping; GWAS, genome-wide association study; PheRS, phenotype risk score;
PheWAS, phenome-wide association study; PRS, polygenic risk score.

system or, in international settings, a national population.The array of data available within EHRs
(Table 1) also provides a broader and potentially more nuanced representation of the phenome
than is found in most clinical research cohorts. For example, findings from radiographic, labora-
tory, and procedural reports provide objective confirmatory evidence of disease that complements
administrative codes and problem list entries, and also provide clinical details to allow disease stag-
ing and other metrics of disease severity. In addition, longitudinal EHR data enable investigators
to examine how risk factors and disease are interwoven over the course of an individual’s life span.
Both of these EHR features allowed investigators from a US-based integrated health system to
study the impact of familial hyperlipidemia–related variants over patients’ lifetimes (2). Specifi-
cally, they were able to demonstrate the association between familial hyperlipidemia–related vari-
ants and low-density lipoprotein (LDL) cholesterol, and then the cumulative effect of elevated
LDL values on the lifetime risk of ischemic heart disease. In this study, the risk for premature
coronary artery disease (defined as having the disease at age 55 or younger in males and age 65
or younger in females) among familial hyperlipidemia variant carriers was particularly notable,
with an odds ratio of 3.7 compared with noncarriers, reinforcing the prognostic importance of
knowing one’s familial hyperlipidemia status early in life. Without the availability of decades of
EHRs across a large, sequenced population, such studies are not feasible.

However, EHR advantages are balanced by common limitations of using EHR data for clin-
ical research. The primary challenge is the completeness of patient records; some records may
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Table 1 Commonly utilized data elements and tools for extracting phenotypes from EHRs for phenome-wide
research

Data element Description Utility for phenome science
Claims data Billing claims data used for diagnosis and procedures;

examples include ICD, phecodes (derived from
ICD), and CPT

Structured data to extrapolate patient
diagnoses, symptoms, findings, and
procedures

Demographics Age, sex/gender, race, ethnicity, date of birth, date of
death

Covariate adjustments, cohort definition,
structured data

Indexed concepts from
clinical narratives

Terms may be mapped to SNOMED-CT and the
HPO

Standardizing phenotype concepts to index
and merge narrative text

Semistructured
documents

Problem lists, family history, flow sheets, radiology,
pathology, procedures, cytology reports

Natural language processing for complex
e-phenotyping

Encounters Admission–discharge–transfer, provider and clinic
assignments.

Severity stratification, healthcare utilization

Laboratory Laboratory name, value, unit, date; standardized by
LOINC in some EHRs

Criteria for detecting diagnoses, cohort
definitions, covariate adjustments

Medications Medication name, dosing, frequency, route, duration,
form, strength standardized to RxNorm standard

Criteria for detecting exposures, cohort
definitions, covariate adjustments

Tumor (cancer)
registry

Organization (e.g., North American Association of
Central Cancer Registries) for cancer registry data
across public and private organizations for
standardization

Cancer-related e-phenotyping

Vital signs Blood pressure, BMI, height, weight, temperature Covariate adjustments, structured data

Abbreviations: BMI, body mass index; CPT, Current Procedural Terminology; EHR, electronic health record; e-phenotyping, electronic phenotyping;
HPO, Human Phenotype Ontology; ICD, International Classification of Diseases; LOINC, Logical Observation Identifiers Names and Codes;
SNOMED-CT, Systematized Nomenclature of Medicine–Clinical Terms.

be fragmented across different health systems or interrupted when new EHRs are implemented
or migrated to a new vendor (110). Records may be “left-censored” prior to the date the patient
begins receiving care at an institution and “right-censored” at the point the patient exits the care
of that institution (13). EHR-based cohorts are also not population-based samples and represent
only those populations that have access to and can afford care at that institution. Both of these
limitations indicate that the lack of a phenotypic signal within patient records does not always
constitute strong evidence for the absence of that phenotype; sufficient detail may simply be miss-
ing from the available EHRs. Investigators have developed several strategies for mitigating these
sources of bias, including the use of a “medical home” population that is likely to receive longitu-
dinal primary care at the institution hosting the EHR (13).This strategy narrows the retrospective
study cohort to those with repeated historical visits at specific clinics. A second strategy is to cross-
link registry, state, or other external data sources to fill in gaps in local EHR data and/or provide
corroborating signals. Overall, the limitations of EHRs are outweighed by the wealth of clinical
information that is available. The ability to use these data in a high-throughput mechanism and
link to genomic data is critical to the advancement and practice of genomic medicine.

Access to EHR data for research purposes requires the development of a parallel resource, the
clinical data warehouse, which provides data to investigators in formats conducive to large-scale
research (70). Though clinical data warehouses derived from EHRs can be costly to build and
maintain, the investment can facilitate rapid translational and discovery-based research. At this
time, there is no unified approach to constructing a clinical data warehouse; a recent comprehen-
sive review found approximately 29 separate data architectures for these data repositories (38).
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This heterogeneity complicates the pooling of data across institutions and is part of the reason
that the development of e-phenotyping algorithms requires validation at multiple institutions to
demonstrate portability.

Development of Electronic Phenotyping

As EHR data accumulated over decades, researchers began to utilize highly structured data types
to represent phenotypes, or the observable characteristics of an individual resulting from the inter-
action of one’s genotype with the environment. The earliest e-phenotyping methods are founded
on the common denominator of the administrative coding that underlies the process of billing for
healthcare. In the United States, the Medicare program was instrumental in requiring diagnostic
and procedural codes in machine-readable formats, which initially allowed researchers to deter-
mine causes of hospitalization in elderly populations over time (67). This schema comprises two
key code sets: the International Classification of Diseases (ICD) codes and the Common Proce-
dural Terminology (CPT) codes. Now in its 10th revision, the ICD diagnostic codes are used in
the majority of disease-based phenotype algorithms developed in the last decade. As researchers
began to utilize electronic code data, issues with accuracy began to arise (50, 60), and grouping and
collapsing codes to increase diagnostic reliability was recommended (89). These efforts grew into
early e-phenotyping (15, 57), where researchers utilized combinations of billing codes and dis-
charge data to define cases and controls for diseases and clinical outcomes. As institutions began
to organize their data and create integrated data warehouses (38), the breadth of data available
for research grew beyond standard codes and administrative data to include laboratory results,
medications, vital signs, medical notes, and reports (115). Table 1 lists commonly utilized data
elements gathered from EHRs and the associated utility for phenome science.

In 2010, Ritchie et al. (84) developed e-phenotypes for five conditions of interest and exam-
ined genetic associations across a large biobank population; by replicating known associations
and discovering new ones, the team demonstrated the utility of e-phenotyping for establishing
genome–phenome associations. The need to improve phenotype fidelity prompted investigators
to develop tools to extract more complex data (96). What started as more structured, rule-based
algorithms moved to methods such as natural language processing (95, 120), deep data mining,
machine learning (121), and artificial intelligence (51). These techniques have allowed researchers
over the last decade to scan both the unstructured and structured components of EHRs. For exam-
ple, a combination of natural language processing–derived disease concepts, administrative codes,
and laboratory results can define a broad spectrum of ischemic heart disease risk factors; analysis
of these longitudinal data using machine learning greatly increases the discrimination of cardio-
vascular disease predictivity (121). The portability of these techniques (93) across institutions and
data systems is critical to move from research on custom cohorts and populations to large-scale,
cross-institutional, translational research. The organization of EHR data into integrated research
warehouses allowed for high-quality phenotypes in large cohorts, and the standardization of these
data warehouses into common data models precipitated the era of large-scale data sharing.

Transitioning from Local Data to Large-Scale Collaborations

To facilitate cross-institutional analyses, electronic health data must be standardized to minimize
the bias of local institution data storage, terminology, and formats. Over the last two decades,
the use of common data models has increased in many research programs, enabling researchers
to develop analyses locally and rapidly implement them across external institutions. Examples
include the Observational Medical Outcomes Partnership, established after the Food and Drug
Administration Amendments Act of 2007 (35), which required the Food and Drug Administration
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to collaborate with public and private partners and access disparate data sources to increase safety
data analyses (100). The Observational Medical Outcomes Partnership has grown into the Obser-
vational Health Data Science and Informatics program, which has more than 2,500 users from 19
countries and half a billion patient records from more than 100 different databases. The National
Patient-Centered Clinical Research Network (PCORnet) (17) has demonstrated the ability to
collect large quantities of strictly curated EHR data across more than 70 million people and 11
research networks and to create a coordinating center using a common data model. This rigorous
structure allows for more rapid data collection at lower costs, effectively giving researchers access
to a large, nationwide EHR data set. Other examples include the Shared Health Research Infor-
mation Network (SHRINE), which aims to enable population-based research through large-scale
data sharing and is key to bridging the gap between small discovery-based cohorts and larger trans-
lational studies, and the Informatics for Integrating Biology at the Bedside (i2b2) tool, which aims
to enable precision medicine through open source data sharing, standardizations, and integration.

These large networks allow researchers to quickly respond to emerging diseases. For instance,
the National COVID Cohort Collaborative was quickly set up through a partnership between
the National Center for Advancing Translational Sciences and the Clinical and Translational
Science Awards program in the spring of 2020 and rapidly established an infrastructure for ac-
cepting, aggregating, and providing expedited access to EHR data on coronavirus disease 2019
(COVID-19) patients to support cutting-edge research during the pandemic. The data structures,
based on the i2b2, PCORnet, Observational Medical Outcomes Partnership, and TriNetX com-
mon data models acquire data twice monthly from more than 50 different institutions. Without
standardization, analyses would be limited to local instances or come with high costs in effort and
funds to transform analyses across data warehouses.

Common data models and large institutional data warehouses have facilitated the increase in
high-throughput research over the last decade and enabled large-scale clinical research.However,
it is the linkage of these data to genomics that enables precision medicine and the success of
translational genomics research.

Large-Scale Biobanking-Enabled Genomic Research

Preserving biospecimens for later research is a fundamental component of both discovery
and translational studies. Biobanks can range from small, study-specific repositories to large,
institution-wide efforts. The establishment of institutional biobanks in hospital settings has al-
lowed researchers to preserve specimens collected through routine clinical care. This allows for
banking of specimens already being sampled for clinical purposes, reducing the burden on pa-
tients. For example, groups such as the National Cancer Institute have developed strategies and
operational procedures to maximize the creation of standardized, sustainable resources (58, 106).
Biobanks with prospective enrollments offer the ability to use germline DNA for large-scale ge-
nomics. Examples like the Vanderbilt University Medical Center bank BioVU (87) enroll partic-
ipants and then obtain discarded blood collected through routine care, allowing the participant
to contribute to the DNA bank without requiring an additional blood draw. Large-scale genomic
biobanks include the All of Us Research Program (4, 18), which focuses on enrolling a million
participants with an emphasis on underrepresented populations; the UK Biobank (19, 76), which
followed and collected data on 500,000 participants across the United Kingdom, tied these data
to genomic data, and made the data available to researchers across the world; and the Electronic
Medical Records and Genomics (eMERGE) network, which collected EHR and genomic data on
more than 130,000 participants across the United States.

Hundreds of biobanks exist across the world (77, 101), setting the stage for advances in a vari-
ety of diseases and overall health. These specimens can be used to answer genomic, epigenomic,
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proteomic, and metabolomic research questions. Biobanks storing blood or extracted DNA have
the potential to examine genomics across large cohorts and diverse populations. The ability to tie
these biobanks to longitudinal EHRs is critical when it comes to examining large-scale genomic
research. A few data points collected at time of enrollment, or a snapshot of an EHR, does not
allow for large-scale data mining, longitudinal data, or the ability to assess disease outcomes. In-
terfacing with participants requires time, study staff effort, and participant education and can be
costly, making the ability to tie genomics to on-the-shelf large-scale EHR data paramount. As
reviewed by Stark et al. (101), governments around the world are making investments in genomic
medicine initiatives to help bridge the gap between discovery research and translational medicine,
and these initiatives aim to collect genomic data tied to clinical health records.

Several factors contribute to the ability to move from local disease-specific analysis to large-
scale translational genomics work. First, the ability to effectively mine large-scale EHR data uti-
lizing electronic methods and tools allows researchers to look across their data warehouse for
associations in local patient populations over time. Second, institution-wide efforts to share data
in structured formats across institutions facilitate researchers’ ability to nationally and globally
share data. This paves the way for research focused on rare and common disease, increases the
ability to examine conditions over diverse populations, and contributes to national and global ef-
forts. Finally, the ability to tie these large-scale EHR data to genomics empowers investigators to
take the next step in translational and precision medicine, allowing the field of genomic medicine
to rapidly increase and diversify. This linkage launches myriad tools and techniques that today are
leading to a new era of translational genomics research.

FROM DISCOVERY TO CLINICAL TRANSLATION

From Genome-Wide Association Studies to Polygenic Risk Scores

The theory behind using large-scale genomic associations to understand common complex disease
was proposed by Risch &Merikangas (83) in 1996.GWAS technology was developed in 2002 (74)
to agnostically search for genetic associations with a single trait, and was implemented shortly
thereafter, in 2005, to examine genome-wide associations for single-nucleotide polymorphisms
(SNPs) involved in age-related macular degeneration (43, 56) (see Figure 2). The success of early

2002:
GWASs

2007:
Polygenic analysis
from GWASs

2010:
PheWASs,
EHRs for
e-phenotyping

2013:
Replicating
GWASs using
PheWASs

2016:
DiscovEHR

2017:
HLA PheWASs

2018:
PheRS

2020:
PhenomeXcan

2007:
Observational Medical
Outcomes Partnership,
HITECH Act

2015:
PrediXcan

Figure 2

Milestones enabling translational research. EHR (top) and genomic data (bottom) technologies facilitated advancements in medical
genomics, increasing the understanding of common complex diseases. Abbreviations: EHR, electronic health record; e-phenotyping,
electronic phenotyping; GWAS, genome-wide association study; HITECH, Health Information Technology for Economic and
Clinical Health; HLA, human leukocyte antigen; PheRS, phenotype risk score; PheWAS, phenome-wide association study.
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GWASs incentivized researchers to find more efficient ways to study large cohorts. By 2007, both
theWellcome Trust Case Control Consortium (111) and the Framingham Heart Study (11) were
publishing studies that addressed multiple phenotypes in the same cohort. Using shared controls
for multiple phenotypes streamlined GWASs by reducing the number of subjects who needed
to be genotyped. GWASs set the stage for heritability estimates of SNPs to be associated with
common complex diseases. GWAS analyses with imputation have shown that the heritability of
many common diseases can be explained by common variants with small effect sizes across the
genome (104, 108). Utilization of GWASs expanded rapidly, with 4,771 publications and 214,295
associations in the GWAS Catalog (12) as of November 2020.

GWASs also allowed researchers to examine polygenic associations of diseases across the
genome. The initial association studies that used GWAS data in humans to examine polygenic
risk focused on risk of psychiatric disorders, cancers, and cardiovascular disease (49, 97, 116). This
work paved the way for the field of PRSs. Over the last several years, PRSs have facilitated the
transition from genomic discovery research using GWASs to clinical translational work, associ-
ating risk values, odds ratios, and statistical confidence with genomic associations. SNP selection
and weighting (how likely it is that the SNPs are associated with the condition of interest) are
used to model and validate polygenic risk (14).

PRSs allow investigators to utilize the cumulative effect of relatively common genetic vari-
ants that may contribute to common complex diseases. They have gained traction in neurological
disorders like schizophrenia (65, 105) and Alzheimer’s disease (33), as well as many common com-
plex diseases, such as colorectal cancer (103), prostate cancer (118), coronary artery disease (54,
102), atrial fibrillation, inflammatory bowel disease, type 2 diabetes (54), type 1 diabetes (94), and
breast cancer (54, 66, 90). Several of these studies have demonstrated that PRS risk can be equiv-
alent to monogenic risk (54, 66), suggesting that PRSs will also have clinical utility for predicting
incident disease and tailoring preventative care. The initial work on PRSs has led to random-
ized controlled trials to examine their utility in clinical settings. A 2017 trial and meta-analysis
of two other randomized controlled trials on statin usage for individuals with atherosclerosis risk
found that those in the highest genetic risk categories derived greater relative and absolute ben-
efit from the statins and reduction in coronary heart disease events (72) than those in other risk
categories.

PRSs are an example of how the integration of large-scale genomics to examine multiple com-
ponents of disease development can drive translational research. Though the evidence base for
the clinical utility of PRSs is growing, and some (such as breast cancer and cardiovascular dis-
ease) have been incorporated into clinical risk scores (14, 104), several pitfalls have emerged. The
performance of PRSs across males and females (44) and across ancestry groups is not always main-
tained, and applying them without adjustment may exacerbate health disparities in underrepre-
sented populations (65). This is partially because the first generation of PRSs are derived from
GWAS data sets that do not have sufficient numbers of non–European ancestry individuals. Re-
cent work has moved to the generation and validation of PRSs in more diverse cohorts (5, 28,
73) and trans-ancestry modeling (26, 61) to help mitigate issues of translatability to clinical pop-
ulations. The capabilities of PRS research and its ultimate clinical utility rely heavily not only
on the genomic data available but also on links to the phenome. Because polygenic risk does not
necessarily demonstrate the whole picture of disease development (30, 71), clinical factors, family
history, and monogenic risks must also be considered. The ability to determine which individuals
have conditions and traits of interest and the connection of these conditions and traits to the ge-
nomic information has taken place through advancements in biobanking, EHR mining, and data
capitalization as well as the capability for large-scale data sharing over the last 10 years.
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Development of Phenome-Wide Association Studies to Conduct Large-Scale
Analysis of Human Phenomes

GWASs were enabled by genotype array technology that allowed researchers to sample genetic
variation across the human genome. Similarly, the adoption of EHRs enabled querying of a broad
spectrum of signs, symptoms, diagnoses, and laboratory and radiographic findings across the hu-
man phenome.The breadth of phenomic data in EHRsmotivated the introduction of a large-scale
method representing the analytic inverse of a GWAS: a PheWAS. PheWASs scan a large set of
diagnoses or other clinical findings to identify phenomic features associated with single genetic
loci (24).One initial application included the exploration of genetic pleiotropy—the phenomenon
where a single gene influences multiple traits (23). For example, the PheWAS technique has been
used to identify potential functions for the highly polymorphic human leukocyte antigen (HLA)
genes encoding major histocompatibility complexes involved in immune processes (45, 52).

Underlying the PheWAS technique is a knowledge base of diagnostic codes that can charac-
terize a cohort on a phenome-wide scale; manually grouped administrative codes are binned to
create phecodes that each represent a single disease entity. Phecode mappings (109, 117) can be
found at https://phewascatalog.org (23). Currently, phecodes are defined for more than 1,800
diseases, symptoms, and clinical findings (109, 117).

PheWASs have been validated in part by replicating known genotype–phenotype associations;
for example, a PheWAS exploring genetic associations with seven diverse diseases replicated four
of seven previously established findings (24). Subsequently, a larger study replicated 51 of 77 as-
sociations reported in the GWAS Catalog for which there was a matching phecode (23). These
studies showed that phenome-wide characterizations of EHR cohorts could be used for both val-
idation and discovery. However, the results also showed that phecodes and large-scale analytic
methods such as PheWAS trade some precision for breadth. Replicated PheWAS associations
often exhibit an attenuated effect size compared with the original GWAS. While some attenu-
ation is expected due to regression to the mean, some loss of signal may also be related to the
drawbacks of scalable billing code–based phenotypes, which are subject to loss of sensitivity and
specificity.

Application of Large-Scale Phenomic Analyses

The development of PheWASs has inspired more recent work to leverage EHRs to identify ge-
netic syndromes that have a complex phenotypic expression. The PheRS method was initially
created to study the impact of rare genetic variants and Mendelian disease (see the sidebar ti-
tled Creating a Phenotype Risk Score along with Figure 3). PheRSs use clinical descriptions
taken from the Online Mendelian Inheritance in Man (OMIM) database and annotated using the
Human Phenotype Ontology (HPO) to create phenotype profiles for thousands of Mendelian
diseases. Each individual in a cohort is assigned to a score based on the presence or absence of
matching features for the target Mendelian disease. The HPO provides a standardized vocabulary
of characteristic abnormalities encountered in human disease. HPO terms can then be mapped to
consolidated billing codes (phecodes), individual codes in ICD9 or ICD10, or other information
extractable from the EHR, establishing well-coded disease definitions. By then assessing the pres-
ence of these features within the record of a patient of interest, one can apply a predictive lens.
Specifically, the PheRS for a given Mendelian disease is defined as the sum of clinical features
observed in a given subject weighted by the log inverse prevalence of the feature—essentially a
disease likelihood based on tractable canonical disease symptom overlap. After initially being used
to assess the pathogenicity of rare genetic variants, PheRSs were refined to serve as a scalable
approach to identifying undiagnosed disease and assessing gene expression (9, 10, 91, 122).
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CREATING A PHENOTYPE RISK SCORE

A PheRS is a numeric value assigned to an individual based on the number of features they share with the clinical
description of a disease.

Calculating the Phenotype Risk Score

PheRSs are calculated by summing up the weights of each feature present in the EHR (Figure 3a). The weights
are defined as the −log10 of the prevalence of the phenotype in a large cohort. Different scores can be calculated for
different sets of phenotypes. The phenotype sets can be defined based on the clinical manifestations of a particular
disease or created de novo to describe a particular patient. The score is intended to reflect the degree of similarity
between a patient and the feature set.

Phenotype Risk Scores for A Mendelian Disease

OMIM provides clinical descriptions for thousands of Mendelian diseases. These descriptions have been annotated
with HPO terms, and a map has been created between HPO terms and phecodes; thus, every disease in OMIM
can be described as a set of phecodes. Some HPO terms are mapped to phecodes that match exactly, while others
are mapped to broader phecodes. Figure 3b shows an abbreviated version of OMIM’s clinical description for cystic
fibrosis. When PheRSs are applied to a cohort, they can distinguish between cases and controls for a particular
disease without relying on the disease label itself. PheRSs have been used to identify pathogenic variants in EHR-
linked biobanks.

Finding Undiagnosed Patients

Beyond using PheRSs to study rare genetic variants, preliminary work suggests that they may help identify undi-
agnosed patients. For example, in Figure 3c, a patient diagnosed with cystic fibrosis late in life had a PheRS in the
99th percentile prior to diagnosis.

EHRs have also been used to interpret clinical genetic sequences more efficiently. Interpreting
clinical genetic data often requiresmanual chart abstraction to help prioritize and interpret genetic
variants. Tools like ClinPhen have been designed to automate this process, using natural language
processing techniques to extract clinical concepts relevant toMendelian disease diagnosis andmap
them to the HPO. Clark et al. (16) described an automated pipeline that extracts features from an
EHR and pairs them with whole-exome sequencing results.

Applying Discovery Research Methods to Translational Medicine

Utilizing genomic data in a clinical setting can be associated with many barriers, including op-
erational issues, physician comprehension of the results and attitudes toward genetic data, de-
termining how to effectively utilize results, clinical decision support, integration of the result
data into the EHR itself, and concerns about associated costs (29, 53). As an example, Vander-
bilt University Medical Center developed a research program in 2010 aimed at determining the
effectiveness of preemptive pharmacogenomic testing of high-risk patient populations to decrease
medication-related adverse events. This program, called the Pharmacogenomic Resource for En-
hanced Decisions in Care and Treatment (PREDICT) (81), combined genomic testing, integra-
tion of the results into the EHR, and associated clinical decision support for physicians. Physician
attitudes were studied, and while the majority agreed that immediate notification of significant
drug–genome interaction was beneficial, there were divisions regarding the responsibility of the
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Figure 3

Creating a PheRS (see also the sidebar titled Creating a Phenotype Risk Score). (a) Summing the weights of each feature present in an
EHR to calculate the PheRS. (b) An abbreviated version of OMIM’s clinical description for cystic fibrosis. (c) An example PheRS plot
for a patient diagnosed with cystic fibrosis late in life. Before the diagnosis, this patient had a cystic fibrosis PheRS in the 99th
percentile. Abbreviations: EHR, electronic health record; HPO, Human Phenotype Ontology; OMIM, Online Mendelian Inheritance
in Man; PheRS, phenotype risk score.

physician, which physicians should be notified, and whether patients should be notified directly
(79). Nationwide surveys supported the findings, suggesting that physicians did not feel prepared
regarding pharmacogenomic testing (99).

As pharmacogenomic testing has become more common, physicians have become more famil-
iar with resources such as the Pharmacogenomics Knowledge Base (PharmGKB) (112), the Phar-
macogenomics Research Network, and the Clinical Pharmacogenetics Implementation Consor-
tium guidelines (82). While acceptance and utilization of pharmacogenomics are still challenges
(37, 40), recent studies have shown that education and even having physicians undergo personal
genomic testing can greatly alter attitudes and understanding (59). Examples from the pharma-
cogenomics field can inform barriers to genomic medicine in general. Clinical education, under-
standing, and support are key for the successful integration of genomics into a healthcare setting.

Moving from discovery research to translational medicine and ultimately informing changes in
patient care has been the focus of billions of dollars of research in countries across the whole world
for the last decade (101).Many of these countries nationally fund networks and research programs
whose main goals are to overcome barriers to implementing genomic medicine in clinical prac-
tices and determine best practices and lessons for translational medicine as a whole. Lessons from
these networks inform the integration of genomics into healthcare research.Two networks funded
by the National Human Genome Research Institute have focused on large-scale EHR research
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and integrating genomic results into translational research and clinical practice: the eMERGE
network and the Implementing Genomics in Practice (IGNITE) network.

The eMERGE network moved from discovery research focused on GWASs (27, 85), Phe-
WASs (23, 24, 107), and e-phenotyping (48, 92) in its earlier phases to returning and integrating
actionable genomic variants (31, 32). The network is currently investigating how genomic and
polygenic risk factors integrate and associate with development of common complex diseases. It
led the field in the reuse of EHR data for secondary research (20, 41, 55, 68, 78), in addition to
developing methods for the integration of genomic results and assessment of clinical uptake and
utilization of genomics over the last several years (6, 21, 36, 46, 88, 113). Lessons from the net-
work (32) include up-front data requirements; rapid sharing of data across EHR systems by using
standardized common data models and collection with local expertise; strong centralized commu-
nication, policies, and project management; consistency in methods; harmonization of data flow
and integration utilizing Health Level 7 International (HL7) and Fast Healthcare Interoperability
Resources (FHIR) standards when possible; and a specific study design with the identification of
attainable short- and long-term goals for downstream analysis of clinical utilization and uptake
across sites for future downstream analyses (31).

The IGNITE network focuses on accelerating genomic medicine utilization by developing
methods for incorporating genomics into clinical care across diverse settings. With an empha-
sis on implementation science, the lessons from the IGNITE network highlight the importance
of having transdisciplinary teams to ensure appropriate expertise during implementation, under-
standing the educational needs of clinic providers and staff and having appropriate tools to ad-
dress these needs, carrying out patient education and engagement, and (as mentioned above for
the eMERGE network) having specific study designs for the outcomes of interest and strong IT
support and data flow standards (39, 98). The IGNITE network also identified that increasing the
priority at the institution of integrating genomics within the health system EHRs by utilizing data
warehouses can assist with overcoming integration challenges (98). The IGNITE network’s Clin-
ical Informatics Working Group recently published a framework data flow for germline genomic
result generation and integration into an institution’s EHRs from both external and internal ven-
dors (25).The framework, validated through a survey at both IGNITE and eMERGE institutions,
highlights the importance of the automation and standardization of genomic information and re-
porting across the pipeline to enhance utility and streamlined integration, since the knowledge
bases associated with genomic medicine are constantly evolving (25). These lessons are applicable
not only to other consortia but also to the transition from discovery to translational research.

The Challenges of Clinical Utility and Implementation

The growth of large-scale genomic and phenomic analyses and the resulting genomic risk scores
(GRSs) have greatly increased the opportunities for translating genomics to clinical practice.
Publications referencing GWASs, PheWASs, and GRSs were introduced between 2000 and 2010
but exponentially increased early in the last decade and have continued to grow (Figure 4).
The majority of these publications describe applications of these three methods to new clinical
domains. However, there have been few published studies of translation, implementation, or
clinical utility. Such studies have been initiated and include the latest phase of eMERGE, which
began in mid-2020 and is investigating genomic risk assessment and management. During this
phase, the network is focusing on returning an integrated risk to participants that incorporates
PRSs, family history, clinical risk factors, and monogenic risks.

In addition, clinical trials to study early-phase commercial products featuring PRSs are recruit-
ing participants. Both the commercial and academic environment have recognized the challenge
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Figure 4

Cumulative number of publications that included terms for common large-scale analytic methods (GWAS,
genome-wide association study; PheWAS, phenome-wide association study, phenome wide; GRS, genomic
risk score, genetic risk score, polygenic risk score) in the title, abstract, or MeSH term. Enabling methods
such as GWAS and PheWAS in combination with the availability of large-scale EHR data laid the
foundation for translational research such as PRSs and GRSs. Abbreviations: EHR, electronic health record;
GRS, genomic risk score; GWAS, genome-wide association study; MeSH, Medical Subject Headings;
PheWAS, phenome-wide association study; PRS, polygenic risk score.

of using PRSs in practice; many are based on GWAS data that do not include diverse ethnic rep-
resentation and consequently perform poorly for people with non-European ancestry (28). The
actionability of PRSs for diseases with a long latency (such as many cancers and cardiovascular
disease) is also not established for all age ranges, and outcomes are difficult to study given the
need for long follow-up. Given this state, most experts are cautious regarding the utility of apply-
ing PRSs to clinical care. The National Comprehensive Cancer Network guidelines specifically
referenced PRSs in a 2020 update to discourage clinical use outside of clinical trials or until their
interpretation and therapeutic implications could be clarified (22). The ability of PheRSs to iden-
tify patients with genomic syndromes is also not yet established, in part because the technique
requires very large populations with detailed EHRs to accrue a sufficient number of patients with
a latent or unrecognized genomic syndrome.

Barriers to the adoption of genomic medicine, including complex interventions such as PRSs,
have been identified at multiple institutions. Chief among these are provider uptake, education,
and willingness to integrate into clinical care (79, 99). As longitudinal EHR databases become
more accessible across diverse populations and tied to banked genetic data, the field of clinical
genomics will rapidly expand. Networks that aim to increase diversity in recruited population
cohorts, such as the All of Us Research Program and eMERGE, will provide researchers with the
diverse genetic samples that have previously been lacking from studies of large cohorts. Studies
demonstrating the feasibility and clinical utility of these new techniques in diverse populations
are critical for widespread adoption. Despite these reservations, it is likely that both PRS and
PheRS interventions will follow the path of more established genomic medicine inventions, such
as pharmacogenomics and the diagnosis of unknown diseases, which gradually gained acceptance
in the clinic as clinical trials and implementation cohort studies were completed (64, 86, 114).
Clinical trials have begun on PRSs over the last few years (72), and more trials are expected as
the PRS model is vetted across multiple populations. Successful completion of current and future
consortia will be needed to formally test clinical use. Since genomic medicine is a relatively young
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field, common approaches to outcome assessment for polygenic risk will need to be reconciled
across studies and established, similarly to the approach taken for monogenic disease (80).

CONCLUSIONS

High-throughput and large-scale methods for associating genomic and phenomic data have ac-
celerated the discovery of large sets of genetic markers with potential prognostic clinical value.
The methods are increasingly dependent on the availability of comprehensive and longitudinal
EHR data using structured data linked to sequence data on very large populations. These innova-
tions have fueled the development of new risk stratification and predictive tools that have proven
value for discovery, particularly the ability to characterize rare variants and pleiotropy, and have
promising but unproven clinical value. For clinical use, there is a need to define the actionabil-
ity of the predictive information, perform additional validation across ethnicities, and perform
outcome-based studies. These advances in translational genomic medicine are founded on the
collaborative nature of cross-institutional and global data sharing made possible by the advances
in EHR utilization over the past few decades.
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