1 Appendix A: Delayed Event Time Scenarios

1.1 Simulation Notation

The following are considered without left truncation:

- T_e is the true event time
- $T_c = T_{rl}$ is the true censoring time and the record length
- $T_{obs} = min(T_e, T_c) = T_d$ is the true observed time and time difference
- $E = I(T_e < T_c)$ is the event indicator
- ϵ is the delayed event time

1.1.1 Simulation 1 - Delayed Diagnosis

- $\widetilde{T}_d = \widetilde{T}_{obs} = min(T_e + \epsilon, T_c)$ is the observed time with delayed event time
- $\widetilde{E} = I(T_e + \epsilon < T_c)$ is the observed event indicator with delayed event time

There are three cases in which subjects can be partitioned once delayed event time is added to their true event time:

Case 1. No error: $\widetilde{E} = 0$ and $T_c < T_e < T_e + \epsilon \Rightarrow \widetilde{T}_d = T_d$ and $\widetilde{E} = E = 0$

Case 2. Delayed event time leads to a misclassfied event status:

 $\widetilde{E} = 0 \text{ and } T_e < T_c < T_e + \epsilon \Rightarrow T_d < \widetilde{T}_d < T_d + \epsilon \text{ and } \widetilde{E} \neq E$

Case 3. Correct event indicator but incorrect time-to-event:

 $\widetilde{E}=1$ and $T_e+\epsilon < T_c \Rightarrow \widetilde{T}_d=T_d+\epsilon$ and $\widetilde{E}=E=1$

1.1.2 Simulation 2 - Baseline Shifted

- $\bar{T}_d = min(T_e \epsilon, T_c \epsilon)$ is the observed time with delayed event time
- $\bar{E} = I(T_e \epsilon < T_c \epsilon)$ is the event indicator with delayed event time

Hence $\overline{T}_d = T_d - \epsilon$ and $\overline{E} \equiv E$

1.2 Simulation 1 - Delayed Diagnosis

1.2.1 *LRM*_{obs}

Assuming we model $f(\widetilde{T}_d)$ linearly:

where g(Z) is the delayed event time as a function of Z and $g(\mathbf{X})$ is the delayed event time as a function of **X**. Then we have:

$$\begin{split} \log it \left[P(\tilde{E} = 1 | Z, \mathbf{X}, \tilde{T}_d) \right] \\ &\Rightarrow \begin{cases} = logit \left[P(E = 1 | Z, \mathbf{X}, T_d) \right] & \text{if no delayed event time} \\ = logit \left[P(E = 1 | Z, \mathbf{X}, T_d) \right] & \text{if delayed event time independent} \\ = logit \left[P(E = 1 | Z, \mathbf{X}, T_d) \right] & \text{if delayed event time depends on Z} \\ = logit \left[P(E = 1 | Z, \mathbf{X}, T_d) \right] & \text{if delayed event time depends on X} \\ &\text{if case } 2 \Rightarrow \neq logit \left[P(E = 1 | Z, \mathbf{X}, T_d) \right] & \text{if delayed event time depends on X} \\ &\text{if case } 3 \Rightarrow \begin{cases} = logit \left[P(E = 1 | Z, \mathbf{X}, T_d) \right] & \text{if no delayed event time} \\ \neq logit \left[P(E = 1 | Z, \mathbf{X}, T_d) \right] & \text{if delayed event time independent} \\ \neq logit \left[P(E = 1 | Z, \mathbf{X}, T_d) \right] & \text{if delayed event time independent} \\ \neq logit \left[P(E = 1 | Z, \mathbf{X}, T_d) \right] & \text{if delayed event time depends on Z} \\ \neq logit \left[P(E = 1 | Z, \mathbf{X}, T_d) \right] & \text{if delayed event time depends on X} \end{cases}$$

1.2.2 LRM_u

$$logit \left[P(\tilde{E} = 1|Z, \mathbf{X}) \right] = \beta_0 + \beta_1 Z + \beta'_2 \mathbf{X} \Rightarrow \begin{cases} = logit \left[P(E = 1|Z, \mathbf{X}) \right] & \text{if case 1} \\ \neq logit \left[P(E = 1|Z, \mathbf{X}) \right] & \text{if case 2} \\ = logit \left[P(E = 1|Z, \mathbf{X}) \right] & \text{if case 3} \end{cases}$$

1.2.3 LRM_{rl}

Assuming we model $f(\widetilde{T}_{rl})$ linearly:

$$logit \left[P(\widetilde{E} = 1 | Z, \mathbf{X}, T_{rl}) \right] = \beta_0 + \beta_1 Z + \beta'_2 \mathbf{X} + \beta_3 T_{rl} \Rightarrow \begin{cases} = logit \left[P(E = 1 | Z, \mathbf{X}, T_{rl}) \right] & \text{if case } 1 \\ \neq logit \left[P(E = 1 | Z, \mathbf{X}, T_{rl}) \right] & \text{if case } 2 \\ = logit \left[P(E = 1 | Z, \mathbf{X}, T_{rl}) \right] & \text{if case } 3 \end{cases}$$

1.3 Simulation 2 - Baseline Shifted

1.3.1 *LRM*_{obs}

Assuming we model $f(\bar{T}_d)$ linearly:

$$\begin{split} \log it \left[P(\bar{E} = 1 | Z, \mathbf{X}, \bar{T}_d) \right] \\ &= \beta_0 + \beta_1 Z + \beta'_2 \mathbf{X} + \beta_3 \bar{T}_d \\ &= \beta_0 + \beta_1 Z + \beta'_2 \mathbf{X} + \beta_3 (T_d - \epsilon) \\ &= \beta_0 + \beta_1 Z + \beta'_2 \mathbf{X} + \beta_3 T_d - \beta_3 \epsilon \\ &\Rightarrow \begin{cases} = \beta_0 + \beta_1 Z + \beta'_2 \mathbf{X} + \beta_3 T_d & \text{if no delayed event time} \\ = (\beta_0 - \beta_3 \epsilon) + \beta_1 Z + \beta'_2 \mathbf{X} + \beta_3 T_d & \text{if delayed event time independent} \\ = \beta_0 + (\beta_1 Z - \beta_3 g(Z)) + \beta'_2 \mathbf{X} + \beta_3 T_d & \text{if delayed event time depends on Z} \\ = \beta_0 + \beta_1 Z + (\beta'_2 \mathbf{X} - \beta_3 g(\mathbf{X})) + \beta_3 T_d & \text{if delayed event time depends on X} \end{cases} \\ &\Rightarrow \begin{cases} = logit \left[P(E = 1 | Z, \mathbf{X}, T_d) \right] & \text{if no delayed event time independent} \\ \neq logit \left[P(E = 1 | Z, \mathbf{X}, T_d) \right] & \text{if delayed event time independent} \\ \neq logit \left[P(E = 1 | Z, \mathbf{X}, T_d) \right] & \text{if delayed event time depends on Z} \\ \neq logit \left[P(E = 1 | Z, \mathbf{X}, T_d) \right] & \text{if delayed event time depends on X} \end{cases} \end{split}$$

where g(Z) is the delayed event time as a function of Z and $g(\mathbf{X})$ is the delayed event time as a function of \mathbf{X} .

1.3.2 LRM_u

$$logit \left[P(\bar{E}=1|Z, \mathbf{X}) \right] = \beta_0 + \beta_1 Z + \beta'_2 \mathbf{X} = logit \left[P(E=1|Z, \mathbf{X}) \right]$$

1.3.3 LRM_{rl}

Assuming we model $f(\bar{T}_{rl})$ linearly, where $\bar{T}_{rl} = T_{rl} - \epsilon = T_c - \epsilon$:

$$\begin{split} \log it \left[P(\bar{E} = 1 | Z, \mathbf{X}, T_{rl}) \right] \\ &= \beta_0 + \beta_1 Z + \beta'_2 \mathbf{X} + \beta_3 (T_{rl} - \epsilon) \\ &\Rightarrow \begin{cases} = \beta_0 + \beta_1 Z + \beta'_2 \mathbf{X} + \beta_3 T_{rl} & \text{if no delayed event time} \\ = (\beta_0 - \beta_3 \epsilon) + \beta_1 Z + \beta'_2 \mathbf{X} + \beta_3 T_{rl} & \text{if delayed event time independent} \\ = \beta_0 + (\beta_1 Z - \beta_3 g[Z]) + \beta'_2 \mathbf{X} + \beta_3 T_{rl} & \text{if delayed event time depends on Z} \\ = \beta_0 + \beta_1 Z + (\beta'_2 \mathbf{X} - \beta_3 g[\mathbf{X}]) + \beta_3 T_{rl} & \text{if delayed event time depends on X} \end{cases} \\ &\Rightarrow \begin{cases} = logit \left[P(E = 1 | Z, \mathbf{X}, T_{rl}) \right] & \text{if no delayed event time independent} \\ \neq logit \left[P(E = 1 | Z, \mathbf{X}, T_{rl}) \right] & \text{if delayed event time independent} \\ \neq logit \left[P(E = 1 | Z, \mathbf{X}, T_{rl}) \right] & \text{if delayed event time depends on Z} \\ \neq logit \left[P(E = 1 | Z, \mathbf{X}, T_{rl}) \right] & \text{if delayed event time depends on X} \end{cases} \end{split}$$

2 Appendix B: Additional Tables

		No Delayed	Significant	Non-significant		
Phenotype	Phecode	Event Time	\mathbf{SNPs}	\mathbf{SNPs}	Independent	Sex
		Event Rate	Event Rate	Event Rate	Event Rate	Event Rate
Cancer of bronchus; lung	165.1	2.74%	1.95%	2.06%	1.78%	1.74%
Cancer of prostate \ast	185	6.52%	6.11%	5.80%	5.78%	-
Hypothyroidism	244	11.74%	10.94%	10.93%	10.64%	10.73%
Type 2 diabetes	250.2	14.33%	13.23%	13.23%	12.79%	12.73%
Vitamin D deficiency	261.4	6.72%	6.16%	6.11%	6.02%	6.12%
Hypercholesterolemia	272.11	9.99%	9.64%	9.75%	9.64%	9.62%
Insomnia	327.4	4.46%	4.00%	4.14%	4.11%	4.11%
Myocardial infarction	411.2	5.61%	4.54%	4.72%	4.66%	4.59%
Coronary atherosclerosis	411.4	16.83%	15.46%	15.51%	14.99%	14.89%
Atrial fibrillation	427.21	9.93%	8.65%	8.66%	8.3%	8.19%

Table S1: Phecodes used in the GWAS application. Includes information about the phenotype, phecode, and the event rate for each delayed event time scenario.

* Analysis performed for males only.

	True Value for β_1						
	log(1)	log(1.1)	log(1.15)	log(1.25)	log(1.5)	log(2)	
S	Simulation	n 1 with le	eft truncatio	n			
Fig. S1 (Simulation 1, left trunc	cation, ce	nsoring de	pending on	$(x_1, x_2), res$	moval-prac	tice,	
large misclassification)							
No delayed error	-0.002	0.000	0.001	0.002	0.005	0.009	
Independent error	-0.001	-0.013	-0.020	-0.033	-0.068	-0.136	
Exposure-dependent error	1.814	1.834	1.842	1.861	1.904	1.984	
Confounder-dependent error	-0.003	0.003	0.005	0.008	0.011	0.005	
Covariate-dependent error	-0.005	-0.018	-0.025	-0.037	-0.069	-0.131	
Fig. S2 (Simulation 1, left trunc	cation, ce	nsoring de	pending on	$(x_1, x_2), ce$	nsor-practi	ice,	
large misclassification)							
No delayed error	-0.003	-0.048	-0.071	-0.118	-0.234	-0.467	
Independent error	0.000	-0.015	-0.022	-0.038	-0.078	-0.157	
Exposure-dependent error	1.671	1.667	1.662	1.653	1.622	1.530	
Confounder-dependent error	-0.006	-0.020	-0.029	-0.048	-0.098	-0.214	
Covariate-dependent error	-0.006	-0.037	-0.052	-0.082	-0.158	-0.309	
Fig. S3 (Simulation 1, left trunc	cation, ce	nsoring de	pending on	$(x_1, x_2, z),$	removal-p	ractice,	
large misclassification)							
No delayed error	-0.002	-0.000	-0.000	0.001	0.005	0.009	
Independent error	-0.004	-0.017	-0.023	-0.037	-0.072	-0.140	
Exposure-dependent error	1.870	1.889	1.897	1.914	1.955	2.031	
Confounder-dependent error	0.003	0.008	0.010	0.012	0.015	0.010	
Covariate-dependent error	-0.005	-0.016	-0.022	-0.036	-0.066	-0.125	
Fig. S4 (Simulation 1, left trunc	cation, ce	nsoring de	pending on	$(x_1, x_2, z),$	censor-pra	ctice,	
large misclassification)							
No delayed error	-0.000	-0.044	-0.067	-0.112	-0.224	-0.450	
Independent error	-0.004	-0.018	-0.025	-0.041	-0.081	-0.159	
Exposure-dependent error	1.734	1.731	1.727	1.719	1.690	1.605	
Confounder-dependent error	0.002	-0.012	-0.020	-0.038	-0.086	-0.197	
Covariate-dependent error	-0.007	-0.034	-0.048	-0.079	-0.152	-0.296	

		True Value for β_1						
	log(1)	log(1.1)	log(1.15)	log(1.25)	log(1.5)	log(2)		
	Simulat	tion 1 with	out truncat	ion				
Fig. S5 (Simulation 1, no trunca	ation, ran	ndom censo	oring, large	misclassifica	tion)			
No delayed error	-0.004	-0.004	-0.004	-0.003	-0.002	0.001		
Independent error	-0.008	-0.026	-0.034	-0.051	-0.093	-0.176		
Exposure-dependent error	2.286	2.288	2.290	2.292	2.298	2.313		
Confounder-dependent error	-0.002	0.001	0.002	0.003	0.005	0.009		
Covariate-dependent error	-0.001	-0.008	-0.012	-0.020	-0.037	-0.074		
Fig. S6 (Simulation 1, no trunca	ation, cen	soring dep	ending on ($(x_1, x_2), large$	ge misclass	ification)		
No delayed error	-0.004	-0.002	-0.002	-0.002	0.000	0.003		
Independent error	-0.005	-0.017	-0.023	-0.037	-0.069	-0.137		
Exposure-dependent error	1.892	1.911	1.921	1.940	1.985	2.069		
Confounder-dependent error	-0.001	0.005	0.008	0.011	0.018	0.016		
Covariate-dependent error	0.003	-0.007	-0.013	-0.021	-0.045	-0.089		
Fig. S7 (Simulation 1, no trunca	ation, cen	nsoring dep	ending on ($(x_1, x_2, z), l$	arge miscl	assification)		
No delayed error	-0.004	-0.003	-0.003	-0.002	-0.000	0.002		
Independent error	-0.006	-0.019	-0.025	-0.039	-0.072	-0.140		
Exposure-dependent error	1.948	1.968	1.978	1.997	2.038	2.118		
Confounder-dependent error	0.004	0.010	0.012	0.015	0.021	0.021		
Covariate-dependent error	0.002	-0.006	-0.011	-0.020	-0.042	-0.083		

			True Val	ue for β_1		
	log(1)	log(1.1)	log(1.15)	log(1.25)	log(1.5)	log(2)
		Simulation	n 2			
Fig. S8 (Simulation 2, random c	ensoring	, low perce	entage data	removal)		
No delayed error	-0.003	-0.003	-0.003	-0.003	-0.002	-0.000
Independent error	-0.008	-0.007	-0.006	-0.004	-0.002	0.002
Exposure-dependent error	-0.010	-0.008	-0.007	-0.006	-0.004	-0.002
Confounder-dependent error	-0.009	-0.007	-0.006	-0.005	-0.004	-0.002
Covariate-dependent error	-0.006	-0.005	-0.004	-0.003	-0.003	0.001
Fig. S9 (Simulation 2, random c	ensoring	, large per	centage data	a removal)		
No delayed error	-0.004	-0.004	-0.004	-0.003	-0.002	0.001
Independent error	-0.007	-0.002	-0.001	0.000	0.002	0.007
Exposure-dependent error	0.013	0.014	0.015	0.016	0.018	0.023
Confounder-dependent error	0.001	0.002	0.003	0.003	0.007	0.011
Covariate-dependent error	0.003	0.004	0.004	0.005	0.007	0.011
Fig. S10 (Simulation 2, censorin	g depend	ling on $(x_1$	(x_2) , low pe	ercentage da	ata remova	l)
No delayed error	-0.004	-0.003	-0.002	-0.001	-0.000	0.003
Independent error	-0.005	-0.004	-0.003	-0.002	-0.000	0.003
Exposure-dependent error	-0.002	-0.001	-0.000	0.001	0.004	0.007
Confounder-dependent error	-0.002	-0.001	-0.000	0.000	0.003	0.007
Covariate-dependent error	0.001	0.002	0.003	0.004	0.006	0.010
Fig. S11 (Simulation 2, censorin	g depend	ling on $(x_1$, x_2), large	percentage	data remo	val)
No delayed error	-0.004	-0.002	-0.002	-0.002	0.000	0.003
Independent error	-0.003	-0.000	0.002	0.003	0.007	0.018
Exposure-dependent error	-0.001	0.001	0.001	0.004	0.010	0.015
Confounder-dependent error	0.000	0.002	0.002	0.004	0.011	0.017
Covariate-dependent error	0.006	0.007	0.007	0.008	0.011	0.015

Fig. S12 (Simulation 2, censoring depending on (x_1, x_2, z) , low percentage data removal)						
No delayed error	-0.010	-0.010	-0.009	-0.008	-0.004	-0.000
Independent error	-0.012	-0.010	-0.009	-0.008	-0.005	-0.001
Exposure-dependent error	-0.010	-0.008	-0.007	-0.005	-0.001	0.003
Confounder-dependent error	-0.011	-0.009	-0.007	-0.006	-0.002	0.002
Covariate-dependent error	-0.005	-0.003	-0.001	0.001	0.004	0.009
Fig. S13 (Simulation 2, censorin	g depend	ling on (a	(x_1, x_2, z)	, large p	ercentage	e data removal)
No delayed error	-0.004	-0.003	-0.003	-0.002	-0.000	0.002
Independent error	-0.005	-0.003	0.009	0.001	0.007	0.017
	0.000	0.000	-0.002	0.001	0.007	0.017
Exposure-dependent error	0.000	0.003	0.002	0.001	0.007	0.017
Exposure-dependent error Confounder-dependent error	0.000	0.003 0.003	-0.002 0.004 0.003	0.001 0.005 0.004	0.007 0.009 0.009	0.017 0.017 0.017

Table S2: Bias of β coefficient for z from Model 1 (*Cox*) that corresponds to the simulations shown in Figures 1-13 in the supplement. Bias is presented for log(1) for log(1.1), log(1.15), log(1.25), log(1.5), log(2).

$P \le 5 \times 10^{-8}$	# Significant SNPs	True Positive *	True Negative *
No delayed e	vent time		
Cox	12	-	-
LRM_{obs}	0	$0\% \ (0/12)$	100%~(795838/795838)
LRM_u	4	33.33% (4/12)	$100\% \ (795838/795838)$
LRM_{rl}	0	$0\% \ (0/12)$	100%~(795838/795838)
Delayed even	t time depends on sig	nificant SNPs	
Cox	19	100% (12/12)	$99.9991\% \ (795831/795838)$
LRM_{obs}	15	100% (12/12)	99.9996% (795835/795838)
LRM_u	17	100% (12/12)	99.9994% (795833/795838)
LRM_{rl}	14	$91.67\% \ (11/12)$	$99.9996\% \ (795835/795838)$
Delayed even	t time depends on no	n-significant SNP	5
Cox	4	33.33% (4/12)	$100\% \ (795838/795838)$
LRM_{obs}	0	0% (0/12)	100% (795838/795838)
LRM_u	1	8.33% $(1/12)$	100% (795838/795838)
LRM_{rl}	0	$0\% \ (0/12)$	$100\% \ (795838/795838)$
Delayed even	t time is independent		
Cox	0	0% (0/12)	$100\% \ (795838/795838)$
LRM_{obs}	0	$0\% \ (0/12)$	100%~(795838/795838)
LRM_u	0	0% (0/12)	$100\% \ (795838/795838)$
LRM_{rl}	0	$0\% \ (0/12)$	$100\% \ (795838/795838)$
Delayed even	t time depends on sex	κ.	
Cox	0	$0\% \ (0/12)$	$100\% \ (795838/795838)$
LRM_{obs}	0	$0\% \ (0/12)$	$100\% \ (795838/795838)$
LRM_u	0	0% (0/12)	100% (795838/795838)
LRM_{rl}	0	0% (0/12)	100% (795838/795838)

Table S3: Number of significant SNPs, true positive rates, and true negative rates for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for cancer of bronchus; lung (phecode 165.1). The results are shown for the $P \leq 5 \times 10^{-8}$ significance level.

$P \le 1 \times 10^{-5}$	# Significant SNPs	True Positive *	True Negative *
No delayed e	vent time		
Cox	29	-	-
LRM_{obs}	22	$68.97\% \ (20/29)$	99.9997% (795819/795821)
LRM_u	24	$79.31\% \ (23/29)$	$99.9999\% \ (795820/795821)$
LRM_{rl}	20	62.07% $(18/29)$	99.9997% (795819/795821)
Delayed even	t time depends on sig	nificant SNPs	
Cox	54	55.17% (16/29)	99.9952% (795783/795821)
LRM_{obs}	52	51.72% (15/29)	99.9954% (795784/795821)
LRM_u	51	51.72% $(15/29)$	99.9955% (795785/795821)
LRM_{rl}	46	48.28% (14/29)	$99.996\% \ (795789/795821)$
Delayed even	t time depends on no	n-significant SNPs	5
Cox	23	51.72% (15/29)	99.999% (795813/795821)
LRM_{obs}	19	41.38% (12/29)	99.9991% (795814/795821)
LRM_u	17	41.38% (12/29)	99.9994% (795816/795821)
LRM_{rl}	20	41.38% (12/29)	99.999% (795813/795821)
Delayed even	t time is independent		
Cox	20	48.28% (14/29)	99.9992% (795815/795821)
LRM_{obs}	13	13.79% (4/29)	99.9989% (795812/795821)
LRM_u	15	27.59% $(8/29)$	99.9991% (795814/795821)
LRM_{rl}	14	20.69% $(6/29)$	99.999% (795813/795821)
Delayed even	t time depends on sex	κ.	
Cox	21	44.83% (13/29)	$99.999\% \ (795813/795821)$
LRM_{obs}	19	13.79% (4/29)	99.9981% (795806/795821)
LRM_u	17	17.24% $(5/29)$	99.9985% (795809/795821)
LRM_{rl}	14	$13.79\% \ (4/29)$	99.9987% (795811/795821)

Table S4: Number of significant SNPs, true positive rates, and true negative rates for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for cancer of bronchus; lung (phecode 165.1). The results are shown for both the $P \leq 1 \times 10^{-5}$ significance level.

$P \le 5 \times 10^{-8}$	# Significant SNPs	True Positive *	True Negative *
No delayed ev	vent time		
Cox	8	-	-
LRM_{obs}	3	37.5%~(3/8)	100% (795842/795842)
LRM_u	0	$0\% \; (0/8)$	100% (795842/795842)
LRM_{rl}	5	62.5% $(5/8)$	100% (795842/795842)
Delayed even	t time depends on sig	nificant SNPs	
Cox	6	$75\% \ (6/8)$	100% (795842/795842)
LRM_{obs}	3	37.5%~(3/8)	100% (795842/795842)
LRM_u	0	$0\% \; (0/8)$	100% (795842/795842)
LRM_{rl}	3	37.5%~(3/8)	100% (795842/795842)
Delayed even	t time depends on nor	n-significant SNPs	5
Cox	5	62.5% $(5/8)$	100% (795842/795842)
LRM_{obs}	3	37.5%~(3/8)	100% (795842/795842)
LRM_u	0	$0\% \ (0/8)$	100% (795842/795842)
LRM_{rl}	4	$50\% \ (4/8)$	$100\% \ (795842/795842)$
Delayed even	t time is independent		
Cox	0	$0\% \; (0/8)$	100% (795842/795842)
LRM_{obs}	0	$0\% \; (0/8)$	100% (795842/795842)
LRM_u	0	0% (0/8)	100% (795842/795842)
LRM_{rl}	0	$0\% \ (0/8)$	100% (795842/795842)

Table S5: Number of significant SNPs, true positive rates, and true negative rates for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for cancer of prostate (phecode 185). The results are shown for the $P \leq 5 \times 10^{-8}$ significance level.

*	Based	on	Model	1	(Cox)) -	no	delayed	event	time
---	-------	----	-------	---	-------	-----	----	---------	------------------------	------

$P \le 1 \times 10^{-5}$	# Significant SNPs	True Positive *	True Negative *
No delayed e	vent time		
Cox	37	-	-
LRM_{obs}	32	51.35%~(19/37)	99.9984%~(795800/795813)
LRM_u	24	56.76%~(21/37)	99.9996%~(795810/795813)
LRM_{rl}	30	$64.86\% \ (24/37)$	$99.9992\% \ (795807/795813)$
Delayed even	t time depends on sig	nificant SNPs	
Cox	31	$75.68\% \ (28/37)$	$99.9996\% \ (795810/795813)$
LRM_{obs}	27	$48.65\% \ (18/37)$	$99.9989\% \ (795804/795813)$
LRM_u	24	51.35%~(19/37)	$99.9994\% \ (795808/795813)$
LRM_{rl}	28	$64.86\% \ (24/37)$	$99.9995\% \ (795809/795813)$
Delayed even	t time depends on no	n-significant SNPs	5
Cox	34	$67.57\% \ (25/37)$	$99.9989\% \ (795804/795813)$
LRM_{obs}	32	$40.54\% \ (15/37)$	$99.9979\% \ (795796/795813)$
LRM_u	32	51.35%~(19/37)	$99.9984\% \ (795800/795813)$
LRM_{rl}	24	51.35%~(19/37)	99.9994%~(795808/795813)
Delayed even	t time is independent		
Cox	29	$62.16\% \ (23/37)$	$99.9992\% \ (795807/795813)$
LRM_{obs}	30	35.14%~(13/37)	99.9979%~(795796/795813)
LRM_u	28	43.24% (16/37)	99.9985% (795801/795813)
LRM_{rl}	23	48.65% (18/37)	99.9994% (795808/795813)

Table S6: Number of significant SNPs, true positive rates, and true negative rates for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for cancer of prostate (phecode 185). The results are shown for the $P \leq 1 \times 10^{-5}$ significance level.

$P \le 5 \times 10^{-8}$	# Significant SNPs	True Positive *	True Negative *
No delayed e	vent time		
Cox	231	-	-
LRM_{obs}	106	$44.59\% \ (103/231)$	99.9996%~(795616/795619)
LRM_u	126	54.11% (125/231)	99.9999% (795618/795619)
LRM_{rl}	194	83.55%~(193/231)	99.9999% (795618/795619)
Delayed even	t time depends on sig	nificant SNPs	
Cox	239	92.21% (213/231)	99.9967% (795593/795619)
LRM_{obs}	124	48.48% (112/231)	99.9985% (795607/795619)
LRM_u	145	57.14% (132/231)	99.9984% (795606/795619)
LRM_{rl}	207	84.42% (195/231)	99.9985% (795607/795619)
Delayed even	t time depends on no	n-significant SNPs	3
Cox	233	94.37% (218/231)	99.9981% (795604/795619)
LRM_{obs}	116	48.92% (113/231)	99.9996% (795616/795619)
LRM_u	140	56.71% (131/231)	99.9989% (795610/795619)
LRM_{rl}	210	87.45% (202/231)	$99.999\% \ (795611/795619)$
Delayed even	t time is independent		
Cox	225	$88.74\% \ (205/231)$	$99.9975\% \ (795599/795619)$
LRM_{obs}	133	52.81% (122/231)	$99.9986\% \ (795608/795619)$
LRM_u	142	57.14% (132/231)	99.9987% (795609/795619)
LRM_{rl}	162	$66.67\% \ (154/231)$	$99.999\% \ (795611/795619)$
Delayed even	t time depends on sex	ζ.	
Cox	268	95.67% (221/231)	99.9941% (795572/795619)
LRM_{obs}	142	53.68% (124/231)	99.9977% (795601/795619)
LRM_u	162	58.87% (136/231)	99.9967% (795593/795619)
LRM_{rl}	235	$91.34\% \ (211/231)$	99.997% (795595/795619)

Table S7: Number of significant SNPs, true positive rates, and true negative rates for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for hypothyroidism (phecode 244). The results are shown for the $P \leq 5 \times 10^{-8}$ significance level.

$P \le 1 \times 10^{-5}$	# Significant SNPs	True Positive *	True Negative *
No delayed e	vent time		
Cox	731	-	-
LRM_{obs}	434	$56.22\% \ (411/731)$	$99.9971\% \ (795096/795119)$
LRM_u	491	$66.21\% \ (484/731)$	99.9991% (795112/795119)
LRM_{rl}	622	$84.4\% \ (617/731)$	99.9994% (795114/795119)
Delayed even	t time depends on sig	nificant SNPs	
Cox	742	$91.11\% \ (666/731)$	99.9904% (795043/795119)
LRM_{obs}	464	57.73% (422/731)	99.9947% (795077/795119)
LRM_u	540	$64.98\% \ (475/731)$	99.9918% (795054/795119)
LRM_{rl}	644	79.62% $(582/731)$	99.9922% (795057/795119)
Delayed even	t time depends on no	n-significant SNPs	3
Cox	753	$92.48\% \ (676/731)$	99.9903% (795042/795119)
LRM_{obs}	446	$55.4\% \ (405/731)$	$99.9948\% \ (795078/795119)$
LRM_u	527	$65.53\% \ (479/731)$	$99.994\% \ (795071/795119)$
LRM_{rl}	637	$79.62\% \ (582/731)$	99.9931%~(795064/795119)
Delayed even	t time is independent		
Cox	731	$88.92\% \ (650/731)$	99.9898% (795038/795119)
LRM_{obs}	488	$60.33\% \ (441/731)$	99.9941% (795072/795119)
LRM_u	587	$69.63\% \ (509/731)$	$99.9902\% \ (795041/795119)$
LRM_{rl}	671	$82.49\% \ (603/731)$	$99.9914\% \ (795051/795119)$
Delayed even	t time depends on sex	ĸ	
Cox	779	$91.79\% \ (671/731)$	$99.9864\% \ (795011/795119)$
LRM_{obs}	524	$62.65\% \ (458/731)$	$99.9917\% \ (795053/795119)$
LRM_u	617	71.82% $(525/731)$	$99.9884\% \ (795027/795119)$
LRM_{rl}	725	$86.87\% \ (635/731)$	99.9887% (795029/795119)

Table S8: Number of significant SNPs, true positive rates, and true negative rates for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for hypothyroidism (phecode 244). The results are shown for the $P \leq 1 \times 10^{-5}$ significance level.

$P \le 5 \times 10^{-8}$	# Significant SNPs	True Positive *	True Negative *		
No delayed event time					
Cox	298	-	-		
LRM_{obs}	153	48.66% (145/298)	99.999%~(795544/795552)		
LRM_u	196	$61.74\% \ (184/298)$	$99.9985\% \ (795540/795552)$		
LRM_{rl}	268	$88.93\% \ (265/298)$	$99.9996\% \ (795549/795552)$		
Delayed even	t time depends on sig	nificant SNPs			
Cox	201	66.11% (197/298)	99.9995% (795548/795552)		
LRM_{obs}	129	41.61% (124/298)	99.9994% (795547/795552)		
LRM_u	164	53.69% (160/298)	99.9995% (795548/795552)		
LRM_{rl}	168	$55.37\% \ (165/298)$	99.9996% (795549/795552)		
Delayed even	t time depends on no	n-significant SNPs	3		
Cox	213	69.8%~(208/298)	$99.9994\% \ (795547/795552)$		
LRM_{obs}	124	38.59% (115/298)	99.9989% (795543/795552)		
LRM_u	165	53.36% (159/298)	99.9992% (795546/795552)		
LRM_{rl}	206	67.45% (201/298)	99.9994% (795547/795552)		
Delayed even	t time is independent				
Cox	224	71.81% (214/298)	$99.9987\% \ (795542/795552)$		
LRM_{obs}	148	47.32% (141/298)	$99.9991\% \ (795545/795552)$		
LRM_u	183	59.06% (176/298)	99.9991% (795545/795552)		
LRM_{rl}	214	$69.13\% \ (206/298)$	99.999%~(795544/795552)		
Delayed event time depends on sex					
Cox	258	80.54% (240/298)	99.9977%~(795534/795552)		
LRM_{obs}	193	62.42% (186/298)	99.9991% (795545/795552)		
LRM_u	211	67.11% (200/298)	99.9986% (795541/795552)		
LRM_{rl}	250	76.85% (229/298)	$99.9974\% \ (795531/795552)$		

Table S9: Number of significant SNPs, true positive rates, and true negative rates for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for type 2 diabetes (phecode 250.2). The results are shown for the $P \leq 5 \times 10^{-8}$ significance level.

$P \le 1 \times 10^{-5}$	# Significant SNPs	True Positive *	True Negative *		
No delayed event time					
Cox	548	-	-		
LRM_{obs}	483	76.28% (418/548)	$99.9918\% \ (795237/795302)$		
LRM_u	474	$79.74\% \ (437/548)$	$99.9953\% \ (795265/795302)$		
LRM_{rl}	526	$89.05\% \ (488/548)$	$99.9952\% \ (795264/795302)$		
Delayed even	t time depends on sig	nificant SNPs			
Cox	549	89.05% (488/548)	99.9923% (795241/795302)		
LRM_{obs}	433	70.07% (384/548)	99.9938% (795253/795302)		
LRM_u	454	78.28% (429/548)	99.9969% (795277/795302)		
LRM_{rl}	535	85.4% (468/548)	99.9916% (795235/795302)		
Delayed even	t time depends on no	n-significant SNPs	3		
Cox	578	92.34% (506/548)	99.9909% (795230/795302)		
LRM_{obs}	465	68.43% (375/548)	99.9887% (795212/795302)		
LRM_u	504	79.56% (436/548)	99.9914% (795234/795302)		
LRM_{rl}	581	86.5% $(474/548)$	99.9865% (795195/795302)		
Delayed even	t time is independent				
Cox	616	$90.51\% \ (496/548)$	99.9849% (795182/795302)		
LRM_{obs}	485	72.08% (395/548)	$99.9887\% \ (795212/795302)$		
LRM_u	534	79.93% (438/548)	$99.9879\% \ (795206/795302)$		
LRM_{rl}	606	$86.68\% \ (475/548)$	$99.9835\% \ (795171/795302)$		
Delayed event time depends on sex					
Cox	603	$88.69\% \ (486/548)$	99.9853% (795185/795302)		
LRM_{obs}	490	69.34% (380/548)	99.9862% (795192/795302)		
LRM_u	529	79.2% (434/548)	99.9881% (795207/795302)		
LRM_{rl}	581	$86.5\% \ (474/548)$	99.9865% (795195/795302)		

Table S10: Number of significant SNPs, true positive rates, and true negative rates for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for type 2 diabetes (phecode 250.2). The results are shown for the $P \leq 1 \times 10^{-5}$ significance level.

$P \le 5 \times 10^{-8}$	# Significant SNPs	True Positive *	True Negative *		
No delayed event time					
Cox	3	-	-		
LRM_{obs}	3	100%~(3/3)	$100\% \ (795847/795847)$		
LRM_u	3	100%~(3/3)	100% (795847/795847)		
LRM_{rl}	3	100%~(3/3)	100% (795847/795847)		
Delayed even	t time depends on sig	nificant SNPs			
Cox	5	66.67% (2/3)	99.9996% (795844/795847)		
LRM_{obs}	5	66.67% $(2/3)$	99.9996% (795844/795847)		
LRM_u	5	66.67% $(2/3)$	99.9996% (795844/795847)		
LRM_{rl}	5	66.67% $(2/3)$	99.9996% (795844/795847)		
Delayed even	t time depends on no	n-significant SNPs	3		
Cox	6	100%~(3/3)	99.9996% (795844/795847)		
LRM_{obs}	6	100%~(3/3)	$99.9996\% \ (795844/795847)$		
LRM_u	6	100%~(3/3)	$99.9996\% \ (795844/795847)$		
LRM_{rl}	6	100%~(3/3)	$99.9996\% \ (795844/795847)$		
Delayed even	t time is independent				
Cox	6	100%~(3/3)	99.9996% (795844/795847)		
LRM_{obs}	7	100%~(3/3)	$99.9995\% \ (795843/795847)$		
LRM_u	7	100% (3/3)	99.9995% (795843/795847)		
LRM_{rl}	6	100%~(3/3)	$99.9996\% \ (795844/795847)$		
Delayed even	t time depends on sex	κ.			
Cox	6	100%~(3/3)	99.9996% (795844/795847)		
LRM_{obs}	7	100%~(3/3)	99.9995% (795843/795847)		
LRM_u	7	100%~(3/3)	99.9995% (795843/795847)		
LRM_{rl}	6	$100\% \ (3/3)$	99.9996% (795844/795847)		

Table S11: Number of significant SNPs, true positive rates, and true negative rates for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for vitamin D deficiency (phecode 261.4). The results are shown for the $P \leq 5 \times 10^{-8}$ significance level.

$P \le 1 \times 10^{-5}$	# Significant SNPs	True Positive *	True Negative *	
No delayed e	vent time			
Cox	13	-	-	
LRM_{obs}	16	$92.31\% \ (12/13)$	$99.9995\% \ (795833/795837)$	
LRM_u	19	$92.31\% \ (12/13)$	$99.9991\% \ (795830/795837)$	
LRM_{rl}	18	100%~(13/13)	99.9994% (795832/795837)	
Delayed even	t time depends on sig	nificant SNPs		
Cox	14	$76.92\% \ (10/13)$	99.9995% (795833/795837)	
LRM_{obs}	23	76.92% $(10/13)$	99.9984% (795824/795837)	
LRM_u	22	76.92% $(10/13)$	99.9985% (795825/795837)	
LRM_{rl}	18	84.62% (11/13)	99.9991% (795830/795837)	
Delayed even	t time depends on no	n-significant SNPs	5	
Cox	17	$84.62\% \ (11/13)$	99.9992% (795831/795837)	
LRM_{obs}	21	84.62% (11/13)	99.9987% (795827/795837)	
LRM_u	22	84.62% (11/13)	99.9986% (795826/795837)	
LRM_{rl}	19	$84.62\% \ (11/13)$	99.999% (795829/795837)	
Delayed even	t time is independent			
Cox	20	$84.62\% \ (11/13)$	$99.9989\% \ (795828/795837)$	
LRM_{obs}	21	$84.62\% \ (11/13)$	99.9987% (795827/795837)	
LRM_u	21	84.62% (11/13)	99.9987% (795827/795837)	
LRM_{rl}	21	$84.62\% \ (11/13)$	99.9987% (795827/795837)	
Delayed event time depends on sex				
Cox	17	$84.62\% \ (11/13)$	99.9992% (795831/795837)	
LRM_{obs}	23	84.62% (11/13)	99.9985% (795825/795837)	
LRM_u	22	84.62% (11/13)	99.9986% (795826/795837)	
LRM_{rl}	21	92.31% $(12/13)$	99.9989% (795828/795837)	

Table S12: Number of significant SNPs, true positive rates, and true negative rates for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for vitamin D deficiency (phecode 261.4). The results are shown for the $P \leq 1 \times 10^{-5}$ significance level.

$P \le 5 \times 10^{-8}$	# Significant SNPs	True Positive *	True Negative *	
No delayed event time				
Cox	15	-	-	
LRM_{obs}	16	$80\% \ (12/15)$	99.9995%~(795831/795835)	
LRM_u	16	$80\% \ (12/15)$	99.9995%~(795831/795835)	
LRM_{rl}	15	100%~(15/15)	$100\% \ (795835/795835)$	
Delayed even	t time depends on sig	nificant SNPs		
Cox	11	73.33% (11/15)	$100\% \ (795835/795835)$	
LRM_{obs}	13	53.33% $(8/15)$	99.9994% (795830/795835)	
LRM_u	14	73.33% $(11/15)$	99.9996% (795832/795835)	
LRM_{rl}	11	73.33% $(11/15)$	100% (795835/795835)	
Delayed even	t time depends on nor	n-significant SNPs	5	
Cox	14	93.33%~(14/15)	100%~(795835/795835)	
LRM_{obs}	16	$73.33\% \ (11/15)$	99.9994%~(795830/795835)	
LRM_u	14	$73.33\% \ (11/15)$	$99.9996\% \ (795832/795835)$	
LRM_{rl}	15	$100\% \ (15/15)$	$100\% \ (795835/795835)$	
Delayed even	t time is independent			
Cox	13	86.67%~(13/15)	100%~(795835/795835)	
LRM_{obs}	16	73.33%~(11/15)	99.9994%~(795830/795835)	
LRM_u	14	$73.33\% \ (11/15)$	$99.9996\% \ (795832/795835)$	
LRM_{rl}	15	$100\% \ (15/15)$	$100\% \ (795835/795835)$	
Delayed even	t time depends on sex	ζ		
Cox	14	93.33%~(14/15)	100%~(795835/795835)	
LRM_{obs}	16	73.33%~(11/15)	99.9994%~(795830/795835)	
LRM_u	14	73.33% $(11/15)$	$99.9996\% \ (795832/795835)$	
LRM_{rl}	14	$93.33\% \ (14/15)$	100% (795835/795835)	

Table S13: Number of significant SNPs, true positive rates, and true negative rates for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for hypercholesterolemia (phecode 272.11). The results are shown for the $P \leq 5 \times 10^{-8}$ significance level.

$P \le 1 \times 10^{-5}$	# Significant SNPs	True Positive *	True Negative *		
No delayed event time					
Cox	60	-	-		
LRM_{obs}	34	41.67% (25/60)	$99.9989\% \ (795781/795790)$		
LRM_u	44	60% (36/60)	$99.999\% \ (795782/795790)$		
LRM_{rl}	52	$85\% \ (51/60)$	99.9999%~(795789/795790)		
Delayed even	t time depends on sig	nificant SNPs			
Cox	53	83.33% $(50/60)$	99.9996% (795787/795790)		
LRM_{obs}	43	45% (27/60)	99.998% (795774/795790)		
LRM_u	41	53.33% $(32/60)$	99.9989% (795781/795790)		
LRM_{rl}	53	80% (48/60)	99.9994% (795785/795790)		
Delayed even	t time depends on no	n-significant SNPs	5		
Cox	58	93.33%~(56/60)	99.9997% (795788/795790)		
LRM_{obs}	37	40% (24/60)	99.9984% (795777/795790)		
LRM_u	45	$58.33\% \ (35/60)$	$99.9987\% \ (795780/795790)$		
LRM_{rl}	55	$86.67\% \ (52/60)$	99.9996%~(795787/795790)		
Delayed even	t time is independent				
Cox	45	68.33% $(41/60)$	$99.9995\% \ (795786/795790)$		
LRM_{obs}	44	$46.67\% \ (28/60)$	$99.998\% \ (795774/795790)$		
LRM_u	44	53.33% $(32/60)$	99.9985% (795778/795790)		
LRM_{rl}	45	$66.67\% \ (40/60)$	99.9994% (795785/795790)		
Delayed even	Delayed event time depends on sex				
Cox	58	83.33%~(50/60)	$99.999\% \ (795782/795790)$		
LRM_{obs}	47	50%~(30/60)	$99.9979\% \ (795773/795790)$		
LRM_u	51	55% (33/60)	99.9977% (795772/795790)		
LRM_{rl}	56	78.33% (47/60)	99.9989% (795781/795790)		

Table S14: Number of significant SNPs, true positive rates, and true negative rates for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for hypercholesterolemia (phecode 272.11). The results are shown for the $P \leq 1 \times 10^{-5}$ significance level.

$P \le 5 \times 10^{-8}$	# Significant SNPs	True Positive *	True Negative *	
No delayed event time				
Cox	1	-	-	
LRM_{obs}	0	$0\% \ (0/1)$	100% (795849/795849)	
LRM_u	0	$0\% \ (0/1)$	100% (795849/795849)	
LRM_{rl}	0	$0\% \ (0/1)$	$100\% \ (795849/795849)$	
Delayed even	t time depends on sig	nificant SNPs		
Cox	1	100% (1/1)	100% (795849/795849)	
LRM_{obs}	1	100% (1/1)	100% (795849/795849)	
LRM_u	1	100% (1/1)	100% (795849/795849)	
LRM_{rl}	1	100% (1/1)	100% (795849/795849)	
Delayed even	t time depends on no	n-significant SNPs	5	
Cox	0	0% (0/1)	100% (795849/795849)	
LRM_{obs}	0	0% (0/1)	100% (795849/795849)	
LRM_u	0	0% (0/1)	100% (795849/795849)	
LRM_{rl}	0	0% (0/1)	100% (795849/795849)	
Delayed even	t time is independent			
Cox	0	$0\% \ (0/1)$	100% (795849/795849)	
LRM_{obs}	0	$0\% \ (0/1)$	100% (795849/795849)	
LRM_u	0	0% (0/1)	100% (795849/795849)	
LRM_{rl}	0	$0\% \ (0/1)$	100% (795849/795849)	
Delayed event time depends on sex				
Cox	0	$0\% \ (0/1)$	100% (795849/795849)	
LRM_{obs}	0	0% (0/1)	100% (795849/795849)	
LRM_u	0	0% (0/1)	100% (795849/795849)	
LRM_{rl}	0	0% (0/1)	100% (795849/795849)	

Table S15: Number of significant SNPs, true positive rates, and true negative rates for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for insomnia (phecode 327.4). The results are shown for the $P \leq 5 \times 10^{-8}$ significance level.

$P \le 1 \times 10^{-5}$	# Significant SNPs	True Positive *	True Negative *	
No delayed e	vent time			
Cox	12	-	-	
LRM_{obs}	14	66.67%~(8/12)	$99.9992\% \ (795832/795838)$	
LRM_u	15	83.33%~(10/12)	$99.9994\% \ (795833/795838)$	
LRM_{rl}	13	$100\% \ (12/12)$	99.9999%~(795837/795838)	
Delayed even	t time depends on sig	nificant SNPs		
Cox	13	58.33% $(7/12)$	99.9992% (795832/795838)	
LRM_{obs}	13	$50\% \ (6/12)$	99.9991% (795831/795838)	
LRM_u	13	58.33% $(7/12)$	99.9992% (795832/795838)	
LRM_{rl}	14	58.33% $(7/12)$	99.9991% (795831/795838)	
Delayed even	t time depends on no	n-significant SNPs	5	
Cox	10	66.67% $(8/12)$	$99.9997\% \ (795836/795838)$	
LRM_{obs}	12	$50\% \ (6/12)$	99.9992% (795832/795838)	
LRM_u	13	66.67% $(8/12)$	99.9994% (795833/795838)	
LRM_{rl}	13	75% (9/12)	99.9995% (795834/795838)	
Delayed even	t time is independent			
Cox	9	$50\% \ (6/12)$	99.9996%~(795835/795838)	
LRM_{obs}	10	33.33%~(4/12)	$99.9992\% \ (795832/795838)$	
LRM_u	13	58.33% $(7/12)$	99.9992% (795832/795838)	
LRM_{rl}	15	83.33%~(10/12)	99.9994% (795833/795838)	
Delayed event time depends on sex				
Cox	14	$75\% \ (9/12)$	$99.9994\% \ (795833/795838)$	
LRM_{obs}	13	58.33% $(7/12)$	99.9992% (795832/795838)	
LRM_u	16	66.67% $(8/12)$	99.999% (795830/795838)	
LRM_{rl}	14	$75\% \ (9/12)$	99.9994% (795833/795838)	

Table S16: Number of significant SNPs, true positive rates, and true negative rates for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for insomnia (phecode 327.4). The results are shown for the $P \leq 1 \times 10^{-5}$ significance level.

$P \le 5 \times 10^{-8}$	# Significant SNPs	True Positive *	True Negative *	
No delayed event time				
Cox	4	-	-	
LRM_{obs}	6	75% (3/4)	99.9996% (795843/795846)	
LRM_u	6	100% (4/4)	99.9997% (795844/795846)	
LRM_{rl}	3	75% (3/4)	100% (795846/795846)	
Delayed even	t time depends on sig	nificant SNPs		
Cox	4	100% (4/4)	100% (795846/795846)	
LRM_{obs}	6	100% (4/4)	99.9997% (795844/795846)	
LRM_u	6	100% (4/4)	99.9997% (795844/795846)	
LRM_{rl}	4	100% (4/4)	100% (795846/795846)	
Delayed even	t time depends on no	n-significant SNP	5	
Cox	3	75%~(3/4)	$100\% \ (795846/795846)$	
LRM_{obs}	5	75% (3/4)	99.9997% (795844/795846)	
LRM_u	6	100% (4/4)	99.9997% (795844/795846)	
LRM_{rl}	3	75% (3/4)	100% (795846/795846)	
Delayed even	t time is independent			
Cox	3	75%~(3/4)	$100\% \ (795846/795846)$	
LRM_{obs}	4	50% (2/4)	$99.9997\% \ (795844/795846)$	
LRM_u	6	100% (4/4)	99.9997% (795844/795846)	
LRM_{rl}	3	75% (3/4)	$100\% \ (795846/795846)$	
Delayed even	t time depends on sex	κ.		
Cox	1	25% (1/4)	$100\% \ (795846/795846)$	
LRM_{obs}	3	25% (1/4)	$99.9997\% \ (795844/795846)$	
LRM_u	4	50% (2/4)	99.9997% (795844/795846)	
LRM_{rl}	1	25% (1/4)	100% (795846/795846)	

Table S17: Number of significant SNPs, true positive rates, and true negative rates for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for myocardial infarction (phecode 411.2). The results are shown for the $P \leq 5 \times 10^{-8}$ significance level.

$P \le 1 \times 10^{-5}$	# Significant SNPs	True Positive *	True Negative *	
No delayed e	vent time			
Cox	19	-	-	
LRM_{obs}	29	$57.89\% \ (11/19)$	$99.9977\% \ (795813/795831)$	
LRM_u	24	$68.42\% \ (13/19)$	$99.9986\% \ (795820/795831)$	
LRM_{rl}	17	$78.95\% \ (15/19)$	$99.9997\% \ (795829/795831)$	
Delayed even	t time depends on sig	nificant SNPs		
Cox	17	36.84% $(7/19)$	$99.9987\% \ (795821/795831)$	
LRM_{obs}	23	42.11% (8/19)	99.9981% (795816/795831)	
LRM_u	17	36.84% (7/19)	99.9987% (795821/795831)	
LRM_{rl}	19	42.11% (8/19)	99.9986% (795820/795831)	
Delayed even	t time depends on no	n-significant SNPs	5	
Cox	21	52.63%~(10/19)	$99.9986\% \ (795820/795831)$	
LRM_{obs}	23	36.84% $(7/19)$	$99.998\% \ (795815/795831)$	
LRM_u	24	47.37% (9/19)	99.9981% (795816/795831)	
LRM_{rl}	17	47.37% (9/19)	99.999% (795823/795831)	
Delayed even	t time is independent			
Cox	18	$31.58\% \ (6/19)$	$99.9985\% \ (795819/795831)$	
LRM_{obs}	26	36.84% $(7/19)$	$99.9976\% \ (795812/795831)$	
LRM_u	17	36.84% $(7/19)$	99.9987% (795821/795831)	
LRM_{rl}	17	42.11% (8/19)	99.9989% ($795822/795831$)	
Delayed event time depends on sex				
Cox	19	42.11% (8/19)	$99.9986\% \ (795820/795831)$	
LRM_{obs}	20	31.58% (6/19)	99.9982% (795817/795831)	
LRM_u	19	36.84% (7/19)	99.9985% (795819/795831)	
LRM_{rl}	15	36.84% $(7/19)$	99.999% (795823/795831)	

Table S18: Number of significant SNPs, true positive rates, and true negative rates for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for myocardial infarction (phecode 411.2). The results are shown for the $P \leq 1 \times 10^{-5}$ significance level.

$P \le 5 \times 10^{-8}$	# Significant SNPs	True Positive *	True Negative *	
No delayed event time				
Cox	181	-	-	
LRM_{obs}	75	27.62% $(50/181)$	$99.9969\% \ (795644/795669)$	
LRM_u	117	$51.93\% \ (94/181)$	$99.9971\% \ (795646/795669)$	
LRM_{rl}	164	$88.95\% \ (161/181)$	99.9996%~(795666/795669)	
Delayed even	t time depends on sig	nificant SNPs		
Cox	152	81.77% (148/181)	$99.9995\% \ (795665/795669)$	
LRM_{obs}	68	27.07% (49/181)	99.9976% (795650/795669)	
LRM_u	83	34.25% (62/181)	99.9974% (795648/795669)	
LRM_{rl}	87	46.41% (84/181)	$99.9996\% \ (795666/795669)$	
Delayed even	t time depends on no	n-significant SNPs	3	
Cox	165	$91.16\% \ (165/181)$	$100\% \ (795669/795669)$	
LRM_{obs}	67	27.07% $(49/181)$	$99.9977\% \ (795651/795669)$	
LRM_u	78	32.6% $(59/181)$	$99.9976\% \ (795650/795669)$	
LRM_{rl}	92	$50.28\% \ (91/181)$	99.9999%~(795668/795669)	
Delayed even	t time is independent			
Cox	164	$90.61\% \ (164/181)$	$100\% \ (795669/795669)$	
LRM_{obs}	73	30.94%~(56/181)	$99.9979\% \ (795652/795669)$	
LRM_u	112	53.04%~(96/181)	99.998%~(795653/795669)	
LRM_{rl}	122	66.3%~(120/181)	99.9997%~(795667/795669)	
Delayed even	t time depends on sex	C		
Cox	139	$76.24\% \ (138/181)$	99.9999%~(795668/795669)	
LRM_{obs}	70	28.73% $(52/181)$	99.9977%~(795651/795669)	
LRM_u	88	$38.67\% \ (70/181)$	$99.9977\% \ (795651/795669)$	
LRM_{rl}	85	46.96% $(85/181)$	$100\% \ (795669/795669)$	

Table S19: Number of significant SNPs, true positive rates, and true negative rates for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for coronary atherosclerosis (phecode 411.4). The results are shown for the $P \leq 5 \times 10^{-8}$ significance level.

$P \le 1 \times 10^{-5}$	# Significant SNPs	True Positive *	True Negative *		
No delayed e	event time				
Cox	423	-	-		
LRM_{obs}	234	$39.48\% \ (167/423)$	$99.9916\% \ (795360/795427)$		
LRM_u	275	$51.77\% \ (219/423)$	$99.993\% \ (795371/795427)$		
LRM_{rl}	234	$52.48\% \ (222/423)$	99.9985% (795415/795427)		
Delayed even	nt time depends on sig	nificant SNPs			
Cox	394	79.43% (336/423)	99.9927% (795369/795427)		
LRM_{obs}	181	31.21% (132/423)	99.9938% (795378/795427)		
LRM_u	246	48.23% (204/423)	99.9947% (795385/795427)		
LRM_{rl}	220	50.12% (212/423)	99.999% (795419/795427)		
Delayed even	nt time depends on no	n-significant SNPs	8		
Cox	365	74.7% $(316/423)$	99.9938% (795378/795427)		
LRM_{obs}	178	30.02% (127/423)	99.9936% (795376/795427)		
LRM_u	248	47.04% (199/423)	99.9938% (795378/795427)		
LRM_{rl}	214	48.94% (207/423)	99.9991% (795420/795427)		
Delayed even	t time is independent				
Cox	343	72.34% $(306/423)$	99.9953% (795390/795427)		
LRM_{obs}	220	40.9% (173/423)	99.9941% (795380/795427)		
LRM_u	246	48.7% (206/423)	99.995% (795387/795427)		
LRM_{rl}	216	49.65% (210/423)	99.9992% (795421/795427)		
Delayed even	Delayed event time depends on sex				
Cox	325	69.03% $(292/423)$	99.9959% (795394/795427)		
LRM_{obs}	195	33.57% (142/423)	99.9933% (795374/795427)		
LRM_u	247	48.7% (206/423)	99.9948% (795386/795427)		
LRM_{rl}	212	48.23% $(204/423)$	99.999% (795419/795427)		

Table S20: Number of significant SNPs, true positive rates, and true negative rates for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for coronary atherosclerosis (phecode 411.4). The results are shown for the $P \leq 1 \times 10^{-5}$ significance level.

$P \le 5 \times 10^{-8}$	# Significant SNPs	True Positive *	True Negative *	
No delayed event time				
Cox	126	-	-	
LRM_{obs}	126	$92.86\% \ (117/126)$	$99.9989\% \ (795715/795724)$	
LRM_u	123	$93.65\% \ (118/126)$	$99.9994\% \ (795719/795724)$	
LRM_{rl}	123	$94.44\% \ (119/126)$	$99.9995\% \ (795720/795724)$	
Delayed even	nt time depends on sig	nificant SNPs		
Cox	118	93.65% (118/126)	$100\% \ (795724/795724)$	
LRM_{obs}	121	92.06% (116/126)	99.9994% (795719/795724)	
LRM_u	121	92.06% (116/126)	99.9994% (795719/795724)	
LRM_{rl}	116	91.27% $(115/126)$	99.9999% (795723/795724)	
Delayed event time depends on non-significant SNPs				
Cox	122	96.83% (122/126)	100% (795724/795724)	
LRM_{obs}	121	91.27% (115/126)	99.9992% (795718/795724)	
LRM_u	121	92.86% (117/126)	99.9995% (795720/795724)	
LRM_{rl}	116	$91.27\% \ (115/126)$	99.9999% (795723/795724)	
Delayed event time is independent				
Cox	118	$93.65\% \ (118/126)$	$100\% \ (795724/795724)$	
LRM_{obs}	119	91.27% (115/126)	99.9995% (795720/795724)	
LRM_u	121	92.86% (117/126)	99.9995% (795720/795724)	
LRM_{rl}	115	$91.27\% \ (115/126)$	$100\% \ (795724/795724)$	
Delayed even	Delayed event time depends on sex			
Cox	116	$92.06\% \ (116/126)$	$100\% \ (795724/795724)$	
LRM_{obs}	119	91.27% (115/126)	99.9995% (795720/795724)	
LRM_u	121	92.86% (117/126)	99.9995% (795720/795724)	
LRM_{rl}	114	90.48% (114/126)	100% (795724/795724)	

Table S21: Number of significant SNPs, true positive rates, and true negative rates for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for atrial fibrillation (phecode 427.21). The results are shown for the $P \leq 5 \times 10^{-8}$ significance level.

$P \le 1 \times 10^{-5}$	# Significant SNPs	True Positive *	True Negative *
No delayed event time			
Cox	186	-	-
LRM_{obs}	197	$72.04\% \ (134/186)$	$99.9921\% \ (795601/795664)$
LRM_u	194	75.81% (141/186)	99.9933% (795611/795664)
LRM_{rl}	186	$83.87\% \ (156/186)$	$99.9962\% \ (795634/795664)$
Delayed even	nt time depends on sig	nificant SNPs	
Cox	175	$83.33\% \ (155/186)$	99.9975% (795644/795664)
LRM_{obs}	177	69.89% (130/186)	99.9941% (795617/795664)
LRM_u	173	70.97% (132/186)	99.9948% (795623/795664)
LRM_{rl}	156	76.88% (143/186)	99.9984% (795651/795664)
Delayed even	it time depends on no	n-significant SNPs	5
Cox	176	$83.33\% \ (155/186)$	99.9974% (795643/795664)
LRM_{obs}	151	69.89% (130/186)	99.9974% (795643/795664)
LRM_u	149	72.04% (134/186)	99.9981% (795649/795664)
LRM_{rl}	158	76.34% (142/186)	99.998% (795648/795664)
Delayed event time is independent			
Cox	179	83.33%~(155/186)	$99.997\% \ (795640/795664)$
LRM_{obs}	157	70.43% (131/186)	$99.9967\% \ (795638/795664)$
LRM_u	161	72.58% (135/186)	99.9967% (795638/795664)
LRM_{rl}	163	77.96% (145/186)	99.9977% (795646/795664)
Delayed event time depends on sex			
Cox	165	81.18% (151/186)	99.9982% (795650/795664)
LRM_{obs}	155	70.43% (131/186)	99.997% (795640/795664)
LRM_u	147	70.43% (131/186)	99.998% (795648/795664)
LRM_{rl}	154	75.81% (141/186)	99.9984% (795651/795664)

Table S22: Number of significant SNPs, true positive rates, and true negative rates for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for atrial fibrillation (phecode 427.21). The results are shown for the $P \leq 1 \times 10^{-5}$ significance level.

$P \le 5 \times 10^{-8}$	# Significant SNPs	True Positive *	True Negative *	
No delayed e	No delayed event time			
Cox	879	-	-	
LRM_{obs}	488	$49.6\% \ (436/879)$	99.9993% (7957569/7957621)	
LRM_u	591	61.89% (544/879)	99.9994% (7957574/7957621)	
LRM_{rl}	775	86.92% (764/879)	99.9999% (7957610/7957621)	
Delayed even	t time depends on sig	nificant SNPs		
Cox	756	81% (712/879)	$99.9994\% \ (7957577/7957621)$	
LRM_{obs}	485	$49.03\% \ (431/879)$	$99.9993\% \ (7957567/7957621)$	
LRM_u	556	$56.88\% \ (500/879)$	$99.9993\% \ (7957565/7957621)$	
LRM_{rl}	616	67.24% (591/879)	99.9997% (7957596/7957621)	
Delayed even	t time depends on no	n-significant SNPs	5	
Cox	765	84.41% (742/879)	99.9997%~(7957598/7957621)	
LRM_{obs}	458	46.87% (412/879)	$99.9994\% \ (7957575/7957621)$	
LRM_u	531	55.18% (485/879)	99.9994% (7957575/7957621)	
LRM_{rl}	652	72.13% (634/879)	$99.9998\% \ (7957603/7957621)$	
Delayed event time is independent				
Cox	753	81.91% (720/879)	$99.9996\% \ (7957588/7957621)$	
LRM_{obs}	500	51.19% (450/879)	$99.9994\% \ (7957571/7957621)$	
LRM_u	585	61.32% (539/879)	99.9994% (7957575/7957621)	
LRM_{rl}	637	$70.08\% \ (616/879)$	99.9997% (7957600/7957621)	
Delayed event time depends on sex				
Cox	802	$84.16\% \ (733/871)$	$99.999\% \ (7161710/7161779)$	
LRM_{obs}	550	56.49% (492/871)	99.9992% (7161721/7161779)	
LRM_u	607	61.88% $(539/871)$	99.9991% (7161711/7161779)	
LRM_{rl}	705	75.43% (657/871)	99.9993% (7161731/7161779)	

Table S23: Number of significant SNPs, true positive rates, and true negative rates for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for all ten phecodes. The results are shown for the $P \leq 5 \times 10^{-8}$ significance level.

$P \le 1 \times 10^{-5}$	# Significant SNPs	True Positive *	True Negative *
No delayed e	vent time		
Cox	2058	-	-
LRM_{obs}	1495	$59.52\% \ (1225/2058)$	99.9966% (7956172/7956442)
LRM_u	1584	67.83%~(1396/2058)	$99.9976\% \ (7956254/7956442)$
LRM_{rl}	1718	$78.52\% \ (1616/2058)$	$99.9987\% \ (7956340/7956442)$
Delayed even	t time depends on sig	nificant SNPs	
Cox	2042	$85.67\% \ (1763/2058)$	99.9965% (7956163/7956442)
LRM_{obs}	1436	55.98% (1152/2058)	99.9964% (7956158/7956442)
LRM_u	1581	64.63% (1330/2058)	99.9968% (7956191/7956442)
LRM_{rl}	1733	73.71% (1517/2058)	99.9973% (7956226/7956442)
Delayed even	t time depends on no	n-significant SNPs	
Cox	2035	$86.39\% \ (1778/2058)$	$99.9968\% \ (7956185/7956442)$
LRM_{obs}	1384	54.03% (1112/2058)	99.9966% (7956170/7956442)
LRM_u	1581	65.21% (1342/2058)	99.997% (7956203/7956442)
LRM_{rl}	1738	73.71% (1517/2058)	99.9972% (7956221/7956442)
Delayed event time is independent			
Cox	2010	$82.99\% \ (1708/2058)$	99.9962% (7956140/7956442)
LRM_{obs}	1494	$58.65\% \ (1207/2058)$	$99.9964\% \ (7956155/7956442)$
LRM_u	1666	66.52% (1369/2058)	99.9963% (7956145/7956442)
LRM_{rl}	1791	$74.15\% \ (1526/2058)$	99.9967% (7956177/7956442)
Delayed event time depends on sex			
Cox	2001	83.67%~(1691/2021)	99.9957% (7160319/7160629)
LRM_{obs}	1486	57.84% (1169/2021)	$99.9956\% \ (7160312/7160629)$
LRM_u	1665	67.29% (1360/2021)	99.9957% (7160324/7160629)
LRM_{rl}	1792	$75.85\% \ (1533/2021)$	$99.9964\% \ (7160370/7160629)$

Table S24: Number of significant SNPs, true positive rates, and true negative rates for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for all ten phecodes. The results are shown for the $P \leq 1 \times 10^{-5}$ significance level.

	$P \le 5 \times 10^{-8}$		$P < 1 \times 10^{-5}$			
	TPR (95% CI) * $^-$	TNR (95% CI) *	TPR (95% CI) * $^-$	TNR (95% CI) *		
No delay	No delayed event time					
Cox	Reference	Reference	Reference	Reference		
LRM_{obs}	50.62% (44.49%, 56.75%)	99.99%~(99.99%,100.00%)	62.29%~(57.72%,66.85%)	99.99%~(99.97%,~100.00%)		
LRM_u	$57.48\% \ (50.17\%,\ 64.78\%)$	99.99%~(99.99%,~100.00%)	71.37% (67.20%, $75.54%$)	99.99% (99.98%, 100.00%)		
LRM_{rl}	69.34%~(62.73%,~75.94%)	100.00% (99.99%, 100.00%)	80.07%~(75.34%,~84.79%)	99.99%~(99.98%,100.00%)		
Delayed	event time depends on s	significant SNPs				
Cox	84.87% (78.72%, 91.03%)	99.99%~(99.95%,100.00%)	72.92% (67.57%, 78.27%)	99.99%~(99.93%,100.00%)		
LRM_{obs}	$66.67\% \ (60.31\%,\ 73.03\%)$	99.99%~(99.96%,100.00%)	54.33% (49.08%, $59.58%$)	99.99% (99.93%, 100.00%)		
LRM_u	67.72% ($62.31%$, $73.12%$)	99.99% ($99.96%$, $100.00%$)	59.10% ($53.80%$, $64.39%$)	99.99% ($99.93%$, $100.00%$)		
LRM_{rl}	74.66%~(67.29%,~82.04%)	100.00% (99.97%, 100.00%)	67.02%~(61.69%,~72.35%)	99.99%~(99.94%,100.00%)		
Delayed	event time depends on	non-significant SNPs				
Cox	$71.63\% \ (63.44\%,\ 79.82\%)$	100.00% (99.98%, 100.00%)	75.94% (70.58%, 81.30%)	99.99% (99.96%, 100.00%)		
LRM_{obs}	49.17% (43.21%, 55.12%)	99.99%~(99.98%,100.00%)	51.71% (46.63%, 56.79%)	99.99% (99.96%, 100.00%)		
LRM_u	51.72% (45.85%, 57.59%)	99.99%~(99.98%,100.00%)	$61.40\% \ (56.17\%, \ 66.61\%)$	99.99% (99.96%, 100.00%)		
LRM_{rl}	62.14% (55.48%, $68.81%$)	100.00% (99.98%, 100.00%)	$67.78\% \ (62.36\%,\ 73.20\%)$	99.99% (99.96%, 100.00%)		
Delayed event time is independent						
Cox	60.65% (55.34%, 65.96%)	100.00% (99.98%, 100.00%)	68.01% ($62.75%$, $73.26%$)	99.99% (99.96%, 100.00%)		
LRM_{obs}	44.57% (39.65%, 49.49%)	99.99% ($99.97%$, $100.00%$)	49.41% ($44.98%$, $53.85%$)	99.99% ($99.96%$, $100.00%$)		
LRM_u	53.54% ($48.62%$, $58.46%$)	99.99% (99.97%, 100.00%)	57.48% ($52.48%$, $62.48%$)	99.99% ($99.96%$, $100.00%$)		
LRM_{rl}	56.84% ($51.12%$, $62.55%$)	100.00% (99.98%, 100.00%)	64.28%~(59.34%,~69.23%)	99.99%~(99.96%,100.00%)		
Delayed event time depends on sex						
Cox	62.54% (57.05%, $68.03%$)	99.99%~(99.97%,100.00%)	$73.40\% \ (68.26\%, \ 78.54\%)$	99.99%~(99.96%,100.00%)		
LRM_{obs}	$48.27\% \ (43.35\%,\ 53.19\%)$	99.99%~(99.97%,100.00%)	$52.70\% \ (48.49\%, \ 56.91\%)$	99.99% (99.95%, 100.00%)		
LRM_u	53.43% (48.51%, 58.34%)	99.99% (99.97%, 100.00%)	$58.95\% \ (54.52\%, \ 63.37\%)$	99.99% (99.95%, 100.00%)		
LRM_{rl}	58.22% ($52.72%$, $63.72%$)	99.99%~(99.98%,100.00%)	65.96%~(61.60%,~70.33%)	99.99%~(99.96%,100.00%)		

Table S25: Average true positive and true negative rates (95% confidence interval) for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard. The average is calculated from ten phecodes, which are given in Appendix B, Table 1. The results are shown for both the $P \le 5 \times 10^{-8}$ and $P \le 1 \times 10^{-5}$ significance levels.

3 Appendix C: Additional Figures

Fig. S1: Results from Simulation 1 (with truncation) when the event time was generated from a Cox model with baseline hazard from an exponential distribution, the censoring time was generated from a Cox model with baseline hazard from an exponential distribution that depended on x, with left truncation, and the observations with simulated event times before truncation were removed from the analysis (*removal-practice*). The parameters led to a large number of observations with a misclassified event status (detailed in Supplementary A).

Fig. S2: Results from Simulation 1 (with truncation) when the event time was generated from a Cox model with baseline hazard from an exponential distribution, the censoring time was generated from a Cox model with baseline hazard from an exponential distribution that depended on x, with left truncation, and the observations with simulated event times before truncation were considered as censored in the analysis (*censor-practice*). The parameters led to a large number of observations with a misclassified event status (detailed in Supplementary A).

Fig. S3: Results from Simulation 1 (with truncation) when the event time was generated from a Cox model with baseline hazard from an exponential distribution, the censoring time was generated from a Cox model with baseline hazard from an exponential distribution that depended on x and z, with left truncation, and the observations with simulated event times before truncation were removed from the analysis (*removal-practice*). The parameters led to a large number of observations with a misclassified event status (detailed in Appendix A).

Fig. S4: Results from Simulation 1 (with truncation) when the event time was generated from a Cox model with baseline hazard from an exponential distribution, the censoring time was generated from a Cox model with baseline hazard from an exponential distribution that depended on x and z, with left truncation, and the observations with simulated event times before truncation were considered as censored in the analysis (*censor-practice*). The parameters led to a large number of observations with a misclassified event status (detailed in Appendix A).

Fig. S5: Results from Simulation 1 (no truncation) when the event time was generated from a Cox model with baseline hazard from an exponential distribution and the censoring time was generated from a uniform distribution. The parameters led to a large number of observations with a misclassified event status (detailed in Appendix A).

Fig. S6: Results from Simulation 1 (no truncation) when the event time was generated from a Cox model with baseline hazard from an exponential distribution and the censoring time was generated from a Cox model with baseline hazard from an exponential distribution that depended on x. The parameters led to a large number of observations with a misclassified event status (detailed in Appendix A).

Fig. S7: Results from Simulation 1 (no truncation) when the event time was generated from a Cox model with baseline hazard from an exponential distribution and the censoring time was generated from a Cox model with baseline hazard from an exponential distribution that depended on x and z. The parameters led to a large number of observations with a misclassified event status (detailed in Appendix A).

Fig. S8: Results from Simulation 2 when the event time was generated from a Cox model with baseline hazard from an exponential distribution and the censoring time was generated from a uniform distribution. The parameters are the same as those in Figure 1 of main paper. * Type I error evaluated at log(1). Power evaluated at log(1.1), log(1.15), log(1.25), log(2).

Fig. S9: Results from Simulation 2 when the event time was generated from a Cox model with baseline hazard from an exponential distribution and the censoring time was generated from a uniform distribution. The parameters are the same as those in Figure 2 of main paper. * Type I error evaluated at $\log(1)$. Power evaluated at $\log(1.1)$, $\log(1.25)$, $\log(1.5)$, $\log(2)$.

Fig. S10: Results from Simulation 2 when the event time was generated from a Cox model with baseline hazard from an exponential distribution and the censoring time was generated from a Cox model with baseline hazard from an exponential distribution that depended on x. The parameters are the same as those in Figure 1 of main paper.

Fig. S11: Results from Simulation 2 when the event time was generated from a Cox model with baseline hazard from an exponential distribution and the censoring time was generated from a Cox model with baseline hazard from an exponential distribution that depended on x. The parameters are the same as those in Figure 2 of main paper.

Fig. S12: Results from Simulation 2 when the event time was generated from a Cox model with baseline hazard from an exponential distribution and the censoring time was generated from a Cox model with baseline hazard from an exponential distribution that depended on x and z. The parameters are the same as those in Figure 1 of main paper.

Fig. S13: Results from Simulation 2 when the event time was generated from a Cox model with baseline hazard from an exponential distribution and the censoring time was generated from a Cox model with baseline hazard from an exponential distribution that depended on x and z. The parameters are the same as those in Figure 2 of main paper.

Fig. S14: Manhattan plots of GWAS results for cancer of bronchus; lung (phecode 165.1) for each model and delayed event time combination. The dark green line corresponds to $P \le 5 \times 10^{-8}$ and the light green line corresponds to $P \le 1 \times 10^{-5}$.

Fig. S15: Manhattan plots of GWAS results for cancer of prostate (phecode 185) for each model and delayed event time combination. The dark green line corresponds to $P \le 5 \times 10^{-8}$ and the light green line corresponds to $P \le 1 \times 10^{-5}$.

Fig. S16: Manhattan plots of GWAS results for hypothyroidism (phecode 244) for each model and delayed event time combination. The dark green line corresponds to $P \le 5 \times 10^{-8}$ and the light green line corresponds to $P \le 1 \times 10^{-5}$.

Fig. S17: Manhattan plots of GWAS results for type 2 diabetes (phecode 250.2) for each model and delayed event time combination. The dark green line corresponds to $P \le 5 \times 10^{-8}$ and the light green line corresponds to $P \le 1 \times 10^{-5}$.

Fig. S18: Manhattan plots of GWAS results for vitamin D deficiency (phecode 261.4) for each model and delayed event time combination. The dark green line corresponds to $P \le 5 \times 10^{-8}$ and the light green line corresponds to $P \le 1 \times 10^{-5}$.

Fig. S19: Manhattan plots of GWAS results for hypercholesterolemia (phecode 272.11) for each model and delayed event time combination. The dark green line corresponds to $P \le 5 \times 10^{-8}$ and the light green line corresponds to $P \le 1 \times 10^{-5}$.

Fig. S20: Manhattan plots of GWAS results for insomnia (phecode 327.4) for each model and delayed event time combination. The dark green line corresponds to $P \le 5 \times 10^{-8}$ and the light green line corresponds to $P \le 1 \times 10^{-5}$.

Fig. S21: Manhattan plots of GWAS results for myocardial infarction (phecode 411.2) for each model and delayed event time combination. The dark green line corresponds to $P \le 5 \times 10^{-8}$ and the light green line corresponds to $P \le 1 \times 10^{-5}$.

Fig. S22: Manhattan plots of GWAS results for coronary atherosclerosis (phecode 411.4) for each model and delayed event time combination. The dark green line corresponds to $P \le 5 \times 10^{-8}$ and the light green line corresponds to $P \le 1 \times 10^{-5}$.

Fig. S23: Manhattan plots of GWAS results for a trial fibrillation (phecode 427.21) for each model and delayed event time combination. The dark green line corresponds to $P \le 5 \times 10^{-8}$ and the light green line corresponds to $P \le 1 \times 10^{-5}$.

Fig. S24: False positive and false negative SNPs for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for cancer of bronchus; lung (phecode 165.1). Dark green lines correspond to $P \le 5 \times 10^{-8}$ and light green lines correspond to $P \le 1 \times 10^{-5}$.

Fig. S25: False positive and false negative SNPs for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for cancer of prostate (phecode 185). Dark green lines correspond to $P \leq 5 \times 10^{-8}$ and light green lines correspond to $P \leq 1 \times 10^{-5}$.

Fig. S26: False positive and false negative SNPs for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for hypothyroidism (phecode 244). Dark green lines correspond to $P \leq 5 \times 10^{-8}$ and light green lines correspond to $P \leq 1 \times 10^{-5}$.

Fig. S27: False positive and false negative SNPs for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for type 2 diabetes (phecode 250.2). Dark green lines correspond to $P \le 5 \times 10^{-8}$ and light green lines correspond to $P \le 1 \times 10^{-5}$.

Fig. S28: False negative SNPs for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for vitamin D deficiency (phecode 261.4). Dark green lines correspond to $P \le 5 \times 10^{-8}$ and light green lines correspond to $P \le 1 \times 10^{-5}$.

Fig. S29: False negative SNPs for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for hypercholesterolemia (phecode 272.11). Dark green lines correspond to $P \le 5 \times 10^{-8}$ and light green lines correspond to $P \le 1 \times 10^{-5}$.

Fig. S30: False positive and false negative SNPs for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for insomnia (phecode 327.4). Dark green lines correspond to $P \le 5 \times 10^{-8}$ and light green lines correspond to $P \le 1 \times 10^{-5}$.

Fig. S31: False positive and false negative SNPs for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for myocardial infarction (phecode 411.2). Dark green lines correspond to $P \le 5 \times 10^{-8}$ and light green lines correspond to $P \le 1 \times 10^{-5}$.

Fig. S32: False positive and false negative SNPs for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for coronary atherosclerosis (phecode 411.4). Dark green lines correspond to $P \le 5 \times 10^{-8}$ and light green lines correspond to $P \le 1 \times 10^{-5}$.

Fig. S33: False positive and false negative SNPs for each model and delayed event time combination, using Model 1 (*Cox*) with no delayed event time as the gold standard, for atrial fibrillation (phecode 427.21). Dark green lines correspond to $P \le 5 \times 10^{-8}$ and light green lines correspond to $P \le 1 \times 10^{-5}$.