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Abstract

Motivation: Logistic regression models are used in genomic studies to analyze the genetic data linked to electronic
health records (EHRs), and do not take full usage of the time-to-event information available in EHRs. Previous work
has shown that Cox regression, which can account for left truncation and right censoring in EHRs, increased the
power to detect genotype–phenotype associations compared to logistic regression. We extend this to evaluate the
relative performance of Cox regression and various logistic regression models in the presence of positive errors in
event time (delayed event time), relating to recorded event time accuracy.

Results: One Cox model and three logistic regression models were considered under different scenarios of delayed
event time. Extensive simulations and a genomic study application were used to evaluate the impact of delayed
event time. While logistic regression does not model the time-to-event directly, various logistic regression models
used in the literature were more sensitive to delayed event time than Cox regression. Results highlighted the import-
ance to identify and exclude the patients diagnosed before entry time. Cox regression had similar or modest im-
provement in statistical power over various logistic regression models at controlled type I error. This was supported
by the empirical data, where the Cox models steadily had the highest sensitivity to detect known genotype–pheno-
type associations under all scenarios of delayed event time.

Availability and implementation: Access to individual-level EHR and genotype data is restricted by the IRB.
Simulation code and R script for data process are at: https://github.com/QingxiaCindyChen/CoxRobustEHR.git

Contact: cindy.chen@vumc.org

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) rose to popularity about
15 years ago and have become a powerful approach for the discov-
ery of genetic variations associated with complex human traits and
diseases (Bush and Moore, 2012). GWAS is used to determine the
genetic markers, usually single-nucleotide polymorphisms (SNPs),
that contribute to a particular phenotype or disease of interest with-
in a population of unrelated individuals. A popular way to conduct
GWAS is to use data from the electronic health record (EHR) to as-
certain phenotypes. Phecodes are sometimes used as a simple way to
define phenotypes using billing codes from the International
Classification of Diseases (ICD) in the EHR (Denny et al., 2016).
The use of large cohorts and the evolution of GWAS to have the

ability to assess millions of SNPs in the EHR have led to the discov-
ery of many unique significant genotype–phenotype associations.

Traditionally, case–control genomic studies have used logistic re-
gression models to analyze the genetic data linked to EHR data, but
this method does not consider the longitudinal nature of EHR obser-
vations. Cases are typically defined as individuals who experienced
the event of interest at any timepoint in their record, without taking
into account the time at which the event occurred. To incorporate
this, in addition to logistic regression models that completely ignore
the event time (Harold et al., 2009; Mullins and Bigdeli, 2019), lo-
gistic regression models that adjust for the time-to-event have been
employed (Miyashita et al., 2013; Simón-Sánchez et al., 2011; van
der Net et al., 2008), as well as logistic regression models that adjust
for EHR length (Hughey et al., 2019). Furthermore, many papers
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adjust for age without specifying the time when the age was defined,
hence it is not clear which logistic model is being used (Lu et al.,
2020; Perrot et al., 2020; Tanigawa et al., 2020). The use of Cox re-
gression, which can account for both the right censoring and left
truncation that occurs in EHR data, has also been explored.
Previous work has shown that Cox regression is advantageous over
logistic regression in genomic studies using the EHR with increased
power to replicate known genotype–phenotype associations
(Hughey et al., 2019).

Though GWAS of SNPs often include time-to-event data, logistic
regression is often used instead of Cox regression in analysis since it
is less computationally expensive, despite some recent efforts to
speed up the analysis for GWAS (Bi et al., 2020; Rizvi et al., 2019;
Staley et al., 2017). Another resistance of using the Cox model in
EHR-based analysis is the concern of recorded time accuracy. The
longitudinal nature of EHR data is useful in that it provides infor-
mation regarding disease development and progression due to
repeated clinical visits (Pendergrass and Crawford, 2019).
Individuals enter the healthcare system at various ages (left trunca-
tion) and may leave the system before they have an event (right cen-
soring). This time-to-event information can be utilized in certain
modeling techniques. However, due to the structure of EHR data,
the time-to-event that is used in Cox regression may not always be
accurate. Hersh et al. (2013) identifies several caveats of data qual-
ity in EHRs, including the correctness and completeness of the data.
EHRs may contain inaccurate data since careful documentation on
the event time is not always a priority for clinicians, as the data in
EHRs are collected for clinical and billing use, not for research. In
addition, EHRs do not always contain the complete information of
a patient, since the patient may receive care in a different institution
or be lost to follow-up.

In GWAS, an individual is considered a case if they have evi-
dence of a phecode at some point in their record, and the time-to-
event (i.e. the time of onset for the disease) is the age at which they
first receive a diagnosis code. If an individual has large gaps in their
record, the age at which they first show the phecode on their record
could potentially be older than the age at which they actually devel-
oped the disease. We refer to the setting with positive age difference
between when an individual actually develops the disease and when
the phecode shows up on the record as delayed event time. It is
known that the score test for a simple Cox regression model with
one binary exposure is equivalent to the log-rank test, a non-para-
metric rank-based approach, and hence, robust to the independent
delayed event time on the observed time (Therneau and Grambsch,
2000). However, it remains unclear its impact on Cox models when
other covariates are included in the model and/or the error is not in-
dependent. As Cox models use the time-to-event information direct-
ly, it is of interest to compare its validity to logistic regression
models in the presence of delayed event time.

Both covariate measurement error and outcome measurement
error can be found in regression models. There is extensive literature
addressing how to correct for bias induced by covariate measure-
ment error. For example, Liu and Liang (1991) discuss a method to
correct for non-differential misclassification in covariates with gen-
eralized linear models. Morrissey and Spiegelman (1999) compare
three common methods used to correct biased odds ratio due to mis-
classification of a binary covariate, including the matrix method
(Barron, 1977), inverse matrix method (Marshall, 1990) and max-
imum likelihood estimator. The Simulation and Extrapolation
method (SIMEX) aims to reduce bias caused by additive measure-
ment error in covariates (Cook and Stefanski, 1994). Despite the
vast knowledge in covariate measurement error, there is less litera-
ture concerning outcome measurement error. In linear models, it is
known that random outcome error does not bias regression coeffi-
cients. However, this does not hold for non-linear models, which
has been explored for binary or failure time outcomes (Magder and
Hughes, 1997; Meier et al., 2003; Wang et al., 2016). Recently, Oh
et al. (2018) have extended the SIMEX method to reduce bias in re-
gression coefficients in the presence of random multiplicative error
in the event time. However, the error is assumed to follow Nð0; r2Þ
(i.e. error can be either positive or negative) and is independent of

the event time and covariates. Tong et al. (2020) propose a method
to reduce bias in estimating associations caused by error in EHR-
derived phenotypes, with, however, requirements of validated
subsets.

In this article, we sought to determine the impact of delayed
event time with positive error on the performance of Cox regression
and logistic regression models in simulations and for identifying
genotype–phenotype associations in genetic data linked to EHR
data. We explore several types of error or misclassification that can
introduce bias into the regression parameters, including independent
or random error (non-differentiable), error that depends on covari-
ates or confounders (conditionally non-differentiable) and error that
depends on the exposure (differentiable) to the time-to-event out-
come. We showed by simulation studies and a real-world GWAS ap-
plication that while logistic regression does not model the time-to-
event directly, Cox regression is more robust to the delayed event
time scenarios than various logistic regression models used in the lit-
erature, and the logistic regression model that adjusted for EHR re-
cord length outperforms the other two logistic regression models
considered in this article.

2 Motivation and methods

2.1 Modeling schemes
We first define the Cox model and three commonly used logistic re-
gression models used in GWAS studies. The models are fit with an
exposure variable, z, and two types of covariates x1 and x2, where
x1 is a p� 1 vector of confounders for the exposure and x2 is a q�
1 vector of covariates that is associated with the outcome but not
with the exposure. Both simulations with and without left trunca-
tion, Tlt, are conducted. The observed time, Tobs, is the minimum of
the event time, Te, and the right censoring time, Tc, for each obser-
vation. E is the event indicator and is defined as E ¼ IðTe < TcÞ.
One Cox regression model and three logistic regression models used
in the GWAS literature in the presence of right censoring are
considered.

M1 Cox proportional hazards regression model (Cox):

hðtjz;x1; x2Þ ¼ h0ðtÞ exp fb1zþ b02x1 þ b03x2g (1)

M2 Logistic regression model (adjusting for time difference)
(LRMobs):

logit½PðE ¼ 1jz;x1; x2;TdÞ�
¼ b0 þ b1zþ b02x1 þ b03x2 þ b4f ðTdÞ

(2)

where Td ¼ Tobs.
M3 Logistic regression model (without adjusting for time)

(LRMu):

logit½PðE ¼ 1jz; x1; x2Þ� ¼ b0 þ b1zþ b02x1 þ b03x2 (3)

M4 Logistic regression model (adjusting for record length)
(LRMrl):

logit½PðE ¼ 1jz; x1; x2;Trl;TcÞ�
¼ b0 þ b1zþ b02x1 þ b03x2 þ b4f ðTrlÞ

(4)

where Trl ¼ Tc is the EHR length. Note that Model 4 is usually not
considered as an alternative of the Cox model as, unlike EHR-based
application, Tc is not observable for E¼1 in most time-to-event
applications.

With the existence of left truncation, the Cox model adapting to
left truncation is readily available (Klein and Moeschberger, 2003).
Td in LRMobs model became Td ¼ Tobs � Tlt and LRMu remained
the same. In LRMrl model, Trl ¼ Tc � Tlt, so M4 became:

logit½PðE ¼ 1jz; x1; x2;Trl;TcÞ�
¼ b0 þ b1zþ b02x1 þ b03x2 þ b4Trl þ b5f ðTcÞ

(5)

In all models, b1, the coefficient of the exposure, is the parameter
of interest, and the unknown function f ð�Þ is modeled using a cubic
smoothing spline with three degrees of freedom.
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2.2 Delayed event time scenarios
2.2.1 Delayed diagnosis

To better understand the motivation, consider the following ex-
ample: suppose the event of interest is being diagnosed with a cer-
tain disease (phecode), and there are two individuals who develop
the disease at the same time. Depending on certain characteristics of
the patients, such as their financial standing or insurance status, the
patients are diagnosed at different times after developing the disease.
A patient who does not have insurance may likely put off going to
the doctor until it is necessary and be diagnosed later, while a pa-
tient with insurance may go to the doctor right away. The time dif-
ference between when a patient develops the tumor and is diagnosed
with the disease (or the phecode shows up on their record) is the
delayed event time, �, which is being simulated in the models. Only
positive delayed event time is considered; for example, if a patient
develops the disease at age 40, the delayed event time can only occur
after age 40 until diagnosis. Different delayed event time scenarios
are considered, and specific examples of these scenarios are given in
Section 2.3.

Before the delayed event time, �, is incorporated, the true event
time and true censoring time are denoted as Te and Tc, respectively.
The true observed time is thus Tobs ¼ minðTe;TcÞ and the event indi-
cator is E ¼ IðTe < TcÞ. In this simulation, the delayed event time is
added to the event time only, and the observed time with delayed
event time is the minimum of the true event time plus delayed event
time and the true censoring time: ~T obs ¼ minðTe þ �;TcÞ. This leads
to an event indicator of ~E ¼ IðTe þ � < TcÞ. Due to the nature of
this simulation, the delayed event time that is added to Te can lead
to three different cases that relate ~T obs with Tobs, in which ~E does
not always equal to E. These cases are explained in Supplementary
Appendix SA, but it should be noted that the magnitude of the pro-
portion of misclassified events will change the relative performance
of the models. In addition, if left truncation is present, there are
occurrences of the simulated event time being less than the simulated
left truncation time. In the research to evaluate the Cox model with
left truncation, these occurrences are usually removed from the
simulated dataset as they are considered as not meeting the criteria
or not at risk (Howards et al., 2007; Schiesterman et al., 2013). In
practice, identifying these patients requires additional efforts such as
manually reviewing medical notes. At the absence of such effort or
when the additional information is not available, an observation in
this situation will be considered as a control since they do not have
the event of interest during their record. This is corresponding to the
scenario that the patient was diagnosed before entering the current
healthcare system. In the simulation, both practices as well as the
presence and absence of left truncation will be evaluated for all four
models. In EHR-based research, the simulation with truncation
mimics the study based on a single-site EHR system, while the simu-
lation without truncation corresponds to the study based on a uni-
fied EHR system.

2.2.2 Baseline shifted

Another type of delayed event time occurs when the baseline time is
shifted by a fixed delayed event time, �. For example, consider that
we are interested in the time from cancer diagnosis to cancer mortal-
ity. If the diagnosis time is delayed such as in Section 2.2.1, both the
times of cancer-related death (Te) and the last record of the patient
(Tc) from diagnosis are reduced by the same delayed event time. As
the example that motivates this scenario does not have a left trunca-
tion design, only censoring without truncation is considered.

In baseline shifted, the delayed event time is subtracted from
both Te and Tc to obtain the observed time with the delayed event
time: T obs ¼ minðTe � �;Tc � �Þ. This leads to an event indicator of
E ¼ IðTe � � < Tc � �Þ, so E ¼ E and T obs ¼ Tobs � � for every ob-
servation. Thus, the observations do not partition into different
delayed event cases as described in Supplementary Appendix SA for
delayed diagnosis. The baseline time shifting could, however, lead to
data removal due to Te � � < 0 and/or Tc � � < 0. This happens
when the disease was not diagnosed before the event (i.e. death) or
the censoring time (i.e. last EHR record time).

2.3 Distribution of delayed event time
Five delayed event time scenarios are examined in this study. (i) We
consider when there is no delayed event time, which can occur if a
patient is diagnosed with a disease as soon as it develops (or the phe-
code shows up on the EHR). If the phecode of interest is an acute
disease requiring an emergency visit, the diagnosis time is most like-
ly accurate. (ii) We consider delayed event time caused by factors in-
dependent of the exposure and covariates, such as a delayed clinic
visit due to scheduling. (iii) In addition, we consider exposure-
dependent delayed event time, which can occur if the delay is related
to a particular SNP that is being studied or a drug of interest in a
clinical trial. (iv) Another delayed event time scenario is confounder-
dependent delayed event time. If the delayed event time is caused by
a disease being easier to diagnose in one sex over the other since it is
more common in that sex, and sex is a confounder of the exposure
of interest, the confounding scenario occurs. (v) Last, we consider
covariate-dependent delayed event time that is independent of the
exposure. For example, someone with a lower income may take lon-
ger to go to the doctor and be diagnosed, but income is not associ-
ated with SNPs.

2.4 Simulation study
2.4.1 Data-generation process

We simulated data for the delayed diagnosis scenario motivated in
Section 2.2.1 and the baseline-shifted scenario motivated in Section
2.2.2. Specifically, two covariates x1 and x2 were independently gen-
erated from Bernoulli with P¼0.3 and N ð0:5;0:4Þ, respectively.
The exposure, z, was simulated from a Bernoulli distribution with
P ¼ ½1þ expð1:25� x1Þ��1, i.e. x1 is a confounder for z.

Different distributions for the event time and censoring time
were considered. We first simulated the event time from Model (1)
with baseline hazard generated from either exponential ð0:001Þ or
log-normal ð6:5;1Þ. The former model belongs to the accelerated
failure time model while the latter does not. The regression coeffi-
cients for x1 and x2 were log(2) and the coefficient for z was varied
to examine the type I error rate and power. The censoring time was
simulated from Unifða1; a2Þ, where a1 and a2 were specified to ob-
tain different numbers of observations in each delayed event case as
explained in Supplementary Appendix SA. We also simulated cen-
soring time from a multivariable Cox regression model with baseline
hazard generated from exponential ð0:002Þ, where the parametric
component included x1 and x2 for conditionally non-informative
censoring. The regression coefficients for x1 and x2 were log(2).
Although rare in our motivating study, we additionally considered
when the censoring distribution was simulated from a Cox model
that depended on both the covariates and exposure for comparison.
Again, the regression coefficients for x1 and x2 were log(2), and the
coefficient for z was varied. We conducted the delayed diagnosis
simulation both with and without left truncation. When left trunca-
tion was present, it was simulated from Unif(50, 150). The mean
event rate varied in the simulations depending on the delayed event
case, the coefficient for z and the censoring distribution.

In the simulation study, we considered sample size n¼500 and
fit the four models as described in Section 2.1. To evaluate the type I
error and power of these models, we conducted 5000 simulations,
where the regression coefficient for z was rejected if the P-value was
less than 0.05. We evaluated the type I error when the coefficient for
z was simulated to be zero, and evaluated the power when the coeffi-
cient for z was simulated to be log(1.1), log(1.15), log(1.25),
log(1.5) and log(2).

2.4.2 Delayed event time scenarios

We simulated five delayed event time scenarios which added delayed
event time, �, to Te. When there was no delayed event time, the value
of � was equal to zero. Independent delayed event time was simu-
lated from Unifðb1; b2Þ. When the delayed event time was associated
with the exposure, z, it was simulated from Unifðc1; c2Þ and
Unifðc2; c3Þ for subjects exposed and not exposed, respectively. The
same distributions were used when the delayed event time was asso-
ciated with the confounder, but for subjects with x1 ¼ 1 and x1 ¼ 0,
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respectively. Delayed event time that was associated with the
covariate, x2, was simulated from log-normal ðd � x2; 1Þ. The
parameters b1, b2, c1, c2, c3 and d were varied to obtain different
numbers of observations in each delayed event case as explained
in Supplementary Appendix SA and explore different magnitudes
of delayed event time.

2.5 Genomic study application
2.5.1 Data-generation process

To determine the impact of delayed event time on Cox and logistic
regression models in a real-world application, we conducted
GWAS in the genetic data linked to EHR data (Denny et al., 2018).
We selected ten phenotypes in which to compare the ability of Cox
and logistic regression models to detect known genotype–pheno-
type associations in the presence of simulated delayed event time,
which are listed in Supplementary Appendix SB, Supplementary
Table S1. These phenotypes were chosen before the analysis was
performed. Cases for each phenotype were defined as individuals
who had the phecode in the EHR on two distinct dates, and con-
trols as those who did not have the phecode in the EHR. Left trun-
cation, Tlt, was present in the EHR and corresponded to the age at
the first visit in the healthcare system. The event age, Te, was
defined as the age on the second date of receiving the phecode of
interest. The right censoring age, Tc, was the age at the last visit in
the record. The observed age, Tobs, was Te and Tc for cases and
controls, respectively.

Since we aimed to understand the impact of delayed event time
and the robustness of the models in the empirical data, we assumed
the event age in the EHR data was the ‘true’ event age for each pa-
tient who was a case (i.e. there was no delayed event time in the
EHR). We simulated delayed event time, and it was added to the
event time only, corresponding to Simulation 1 in which
~T obs ¼ minðTe þ �;TcÞ. Due to the structure of the EHR data, since
only patients who had the phecode of consideration on two distinct
dates had an age for the event time, the delayed event time was only
added to the cases. Thus, a case could become a control in the pres-
ence of delayed event time if Te þ � > Tc, where Tc corresponded to
their last ever visit. A control remained a control.

In the genomic application, we considered the four models
described in Section 2.1. For all four models, the linear component
included genotype and the first four components of genetic ancestry.
The model either included a term for biological sex or the data were
restricted to females or males only depending on the phenotype.
Cox used the counting process formulation with left truncation and
the observed age. LRMobs included additional terms for the age dif-
ference (as a cubic spline with three degrees of freedom), which was
the difference between the observed age and the left truncation age,
Td ¼ Tobs � Tlt. LRMu included no additional terms concerning
age. LRMrl included additional terms for age at the last visit (as a
cubic spline with three degrees of freedom) and the record length,
which was the difference in age between the first ever and last ever
visits.

2.5.2 Delayed event time scenarios

We considered four delayed event time scenarios to add to the event
age for each phenotype. We considered delayed event time that
depended on significant SNPs. For a particular phecode, all the sig-
nificant SNPs at the P � 5� 10�8 significance level were selected.
The number of significant SNPs ranged from 1 to 298 among the
ten phecodes used. The coding for the SNP was the allele count. If a
patient had at least one of the alleles, the delayed event time was
simulated from Unifð0; 0:5Þ. If the patient had none of the alleles,
the delayed event time was simulated from Unifð0:5;1Þ. The scale of
age was years, so values of delayed event time equal to 0.5 and 1
corresponded to 6 months and 1 year, respectively. We also consid-
ered delayed event time that depended on non-significant SNPs. For
each phecode, the same number of SNPs that were significant were
randomly sampled from the non-significant SNPs. The delayed event
time was simulated in the same way as for the significant SNPs. We
considered delayed event time that depended on sex, which was only

used in phecodes that were associated with both females and males.
In this case, it was simulated from Unifð0;0:5Þ for females and
Unifð0:5; 1Þ for males. Last, we simulated independent delayed event
time from Unif(0, 1) for all patients.

3 Results

3.1 Simulation results
We used a series of simulations to compare the Cox regression and
logistic regression models under different delayed event time scen-
arios to mimic the application in the EHR data. Since the effect sizes
of the two methods are not equivalent (i.e. hazard ratios and odds
ratios), the performance of the four models was compared in terms
of type I error and power in the presence of delayed event time. We
also evaluated the bias of the estimation for exposure for the Cox
model only.

3.1.1 Simulation 1—delayed diagnosis

Figures 1–3 plot the type I error and power for Simulation 1 (with
left truncation) when the event time is simulated from a Cox model
with baseline hazard from an exponential distribution and the cen-
soring time is simulated from a uniform distribution. Table 1 shows
the corresponding biases of the b1 estimate from Cox. Additional
results for other simulations are included in Supplementary
Appendix SC. In Figures 1 and 2, observations with event time be-
fore entry time were removed from the data analyzed by all four
models (denoted as removal-practice), and in Figure 3, those obser-
vations were included and considered as censored or control
(denoted as censor-practice).

We first consider removal-practice. In all of the delayed event
time scenarios, except for exposure-dependent delayed error (differ-
ential error), Figures 1 and 2 show that Cox performs either the
same or better than two of the logistic regression models with con-
trolled type I error rate and improved power for increasing effect
size. Models LRMu and LRMrl perform well and similarly.
However, LRMobs, performs substantially worse in terms of power
than the other three models. This is because in LRMobs, the effect of
z leaks through Td when it has a non-null effect. The difference be-
tween Figures 1 and 2 is due to the censoring rate and misclassifica-
tion rate at the presence of delayed event time. The misclassification
occurs when the delayed event time causes an observation who is
originally a case to become a control. In Figure 1, the event rate of
the no delayed event time scenario is about 20% and the misclassifi-
cation rate is 3.5–13% of remaining samples. In Figure 2, the event
rate is about 50% and the misclassification rate is 34–39%. As
shown in Table 1, the bias is negligible in all scenarios when the mis-
classification rate is low, and increases with increasing misclassifica-
tion rate when the effect is not null as in Figure 2. When delayed
error depends on z, none of the models have an acceptable perform-
ance. This scenario is almost impossible in a GWAS study, but it is
likely for other EHR-based applications, such as drug repurposing
(Wu et al., 2019).

To evaluate the impact of censor-practice, we compare Figure 2
to Figure 3 under the same simulation settings, except Figure 2 uses
removal-practice and Figure 3 uses censor-practice. When there is
no delayed event time, about 21–30% of observations have their
simulated event time before entry time and are hence removed in
Figure 2 but classified as censored or control in Figure 3. The latter
leads to biased estimate in Cox even under the no delayed event time
scenario (see Fig. 3 in Table 1), because the riskier observations with
shorter event times are more likely to be misclassified as censored.
This truncation-related misclassification is different from the previ-
ous delayed event time related misclassification. With the presence
of delayed event time, the observed event time is less likely to occur
before entry time and, hence, reduces the likelihood of being mis-
classified as censored. Combining the truncated-related misclassifi-
cation and delayed event time related misclassification, the Cox
model, under all but the exposure-dependent delayed event time
scenario, has smaller bias than in the no delayed event time scenario,
which also leads to increased power in Figure 3.
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For the rest of Simulation 1, only the results for large delayed
event time scenario are presented in Supplementary document due
to limited space. When the event time is generated from a Cox
model with baseline hazard from a log-normal distribution, the
results are consistent to those described for the exponential baseline
hazard (results not shown). When the censoring is conditionally

non-informative, Cox always performs the best in terms of power,
followed by LRMrl (Supplementary Appendix SC, Supplementary
Fig. S1 for removal-practice and Supplementary Fig. S2 for censor-
practice, corresponding bias of Cox in Supplementary Table S2).
The difference in power between these two models is larger than
when the censoring distribution is independent of the covariates.

Fig. 1. Results from Simulation 1 when the event time was generated from a Cox model with baseline hazard from an exponential distribution, the censoring time was gener-

ated from a uniform distribution with left truncation, and the observations with simulated event times before truncation were removed from the analysis (removal-practice).

The parameters led to a small number of observations with a misclassified event status (detailed in Supplementary Appendix SA). *Type I error evaluated at log(1). Power eval-

uated at log(1.1), log(1.15), log(1.25), log(1.5), log(2)

Table 1. Bias of b coefficient for z from Model 1 (Cox) that corresponds to the simulations shown in Figures 1–3

True value for b1

log(1) log(1.1) log(1.15) log(1.25) log(1.5) log(2)

Figure 1. Simulation 1, left truncation, random censoring, removal-practice, small misclassification

No error –0.015 –0.012 –0.011 –0.007 –0.001 –0.007

Independent error –0.014 –0.012 –0.012 –0.009 –0.007 –0.006

Exposure-dependent error –0.010 –0.008 –0.007 –0.006 –0.001 0.005

Confounder-dependent error –0.012 –0.009 –0.006 –0.006 –0.002 0.002

Covariate-dependent error –0.011 –0.012 –0.014 –0.017 –0.025 –0.040

Figure 2. Simulation 1, left truncation, random censoring, removal-practice, large misclassification

No error –0.002 –0.000 0.000 0.001 0.002 0.004

Independent error –0.007 –0.025 –0.035 –0.053 –0.097 –0.183

Exposure-dependent error 2.217 2.219 2.220 2.222 2.228 2.241

Confounder-dependent error –0.000 0.001 0.002 0.002 0.003 0.004

Covariate-dependent error –0.003 –0.011 –0.015 –0.025 –0.048 –0.096

Figure 3. Simulation 1, left truncation, random censoring, censor-practice, small misclassification

No error –0.001 –0.039 –0.059 –0.100 –0.201 –0.410

Independent error –0.007 –0.026 –0.036 –0.055 –0.103 –0.193

Exposure-dependent error 2.130 2.119 2.114 2.103 2.071 1.997

Confounder-dependent error –0.000 –0.015 –0.022 –0.038 –0.082 –0.179

Covariate-dependent error –0.003 –0.024 –0.035 –0.058 –0.116 –0.236

Note: Bias is presented for log(1) for log(1.1), log(1.15), log(1.25), log(1.5), log(2).
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Again, when there is exposure-dependent delayed error and a high
proportion of subjects with misclassified events, all four models are
invalid. When the censoring distribution depends on both the cova-
riates and exposure, inflated type I error is associated with LRMobs

and LRMu (Supplementary Appendix SC, Supplementary Fig. S3 for

removal-practice and Supplementary Fig. S4 for censor-practice,
corresponding bias of Cox in Supplementary Table S2).

When there is no left truncation, the truncation-related misclassi-
fication does not exist and similar conclusions from removal-prac-
tice hold for the relative performance of the four models

Fig. 2. Results from Simulation 1 when the event time was generated from a Cox model with baseline hazard from an exponential distribution, the censoring time was gener-

ated from a uniform distribution with left truncation, and the observations with simulated event times before truncation were removed from the analysis (removal-practice).

The parameters led to a large number of observations with a misclassified event status (detailed in Supplementary Appendix SA). *Type I error evaluated at log(1). Power eval-

uated at log(1.1), log(1.15), log(1.25), log(1.5), log(2)

Fig. 3. Results from Simulation 1 when the event time was generated from a Cox model with baseline hazard from an exponential distribution, the censoring time was gener-

ated from a uniform distribution with left truncation, and the observations with simulated event times before truncation were considered censored (censor-practice). The

parameters led to a large number of observations with a misclassified event status (detailed in Supplementary Appendix SA). *Type I error evaluated at log(1). Power evaluated

at log(1.1), log(1.15), log(1.25), log(1.5), log(2)
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(Supplementary Appendix SC, Supplementary Figs S5–S7, corre-
sponding bias of Cox in Supplementary Table S2).

3.1.2 Simulation 2—baseline shifted

In Simulation 2, the relative performance of the four models is con-
sistent with, if not more apparent than, those from Simulation 1 (see
Supplementary Appendix SC, Supplementary Figs S8–S13, corre-
sponding bias of Cox in Supplementary Table S2). We considered
the settings with either low (Supplementary Appendix SC, 5–16%
for Supplementary Fig. S8, 15–23% for Supplementary Fig. S10,
18–26% for Supplementary Fig. S12) or large (Supplementary
Appendix SC, 46–67% for Supplementary Fig. S9, 51–74% for
Supplementary Fig. S11, 51–74% for Supplementary Fig. S13)
amount of data removed due to failure to diagnose before event or
censoring time (i.e. Te � � < 0 or Tc � � < 0). In all settings, the
bias of Cox is negligible as shown in Supplementary Appendix SC,
Supplementary Table S2 under Supplementary Figs S8–S13. Cox
performs similarly or better than the logistic regression models in
terms of statistical power, usually followed by LRMrl. LRMobs gen-
erally performs the worst, though it is about the same as LRMu

when the censoring distribution depends on the covariates. As in
Simulation 1, when the censoring distribution depends on exposure,
LRMobs and LRMu have inflated type I error, sometimes striking as
in Supplementary Appendix SC, Supplementary Figure S12.

3.2 Genomic study application
To study the robustness of Cox and logistic regression models in the
presence of delayed event time, we compared the four models with
every delayed event time scenario using genetic data linked to the
EHR. A cohort of 49 792 individuals of European ancestry was
used, and ten phenotypes were defined from the EHR. For each
model and delayed event time combination, GWAS was run on
795 850 common SNPs. The Manhattan plots for the ten pheno-
types are shown in Supplementary Appendix SC, Supplementary
Figures S14–S23. Cox generally detected the most significant SNPs,
followed by LRMrl, especially for common phenotypes.

Based on the results found in the simulations and Hughey et al.
(2019), we calculated the true positive and true negative rates (TPRs
and TNRs) of detecting associations for the models with each
delayed event time scenario, using the Cox regression model with no
delayed event time as the gold standard. Thus, the SNPs found to be
significant at either the P � 5� 10�8 or P � 1� 10�5 significance
level by Cox with no delayed event time are considered the
‘true’ associations at the respective significance level. The average
TPRs and TNRs from all ten phecodes and corresponding 95% con-
fidence intervals are reported in Supplementary Appendix SB,
Supplementary Table S25. The average TNRs are very high for all
the model and delayed event time combinations due to the relatively
small number of significant SNPs compared to the 795 850 SNPs
that were analyzed in the GWAS. The average TPRs for each model
and delayed event time combination can be visualized in Figure 4.
Cox and LRMrl have the highest true positive rates, even in the
presence of delayed event time. The individual TPRs and TNRs for
the phecodes are provided in Supplementary Appendix SB
(Supplementary Tables S3–S22).

We also plotted the P-values of Cox with no delayed event time
against the P-values of the remaining model and delayed event time
combinations in Figure 5. The gray points indicate true positive or
true negative SNPs, while the colored points represent false positive
and false negative SNPs. The ideal performance of a model would
be to have as few false positives (red points) and false negatives
(blue points) as possible. In addition, the true negative and true posi-
tive SNPs (gray points) should follow closely along the 45� line. Cox
and LRMrl have the fewest false positive and false negative points,
even in the presence of delayed event time. The true positive/true
negative points follow most closely to the 45� line for Cox compared
to the logistic regression models, within each respective delayed
event time scenario. The corresponding figures for the individual
phecodes are given in Supplementary Appendix SC (Supplementary
Figs S24–S33).

In addition, we used the GWAS results from each model/delayed
event time combination for the ten phenotypes to determine each
method’s ability of detecting known associations from the NHGRI-
EBI GWAS Catalog (Buniello et al., 2019). The results are shown in
Figure 6, where each graph shows the four models for a particular
delayed event time scenario. It can be seen that Cox has the highest
relative sensitivity compared to the other models across a range of
P-value cutoffs. LRMrl generally seems to perform better than
Models LRMobs and LRMu in detecting known associations.

4 Discussion

In this article, we sought to determine the impact of delayed event
time with positive error on the performance of Cox regression and
logistic regression models in simulations and for identifying geno-
type–phenotype associations in genetic data linked to EHR data.
One Cox model and three different logistic regression models that
have been used in literature were studied. We considered different
types of misclassification that introduced bias into the regression
parameters, including non-differentiable, conditional non-differenti-
able and differentiable error. In reality, delayed event time is more
likely to occur for chronic diseases than acute diseases.

When left truncation is present, the general assumption is that
subjects experiencing the event before truncation time can be
recorded and removed from the analysis. This assumption, however,
is challenging in EHR-based research. To evaluate its impact, we
compared the removal-practice and censor-practice scenarios in
simulation studies. This extends to the EHR application, where if
patients had the phenotype of interest before entry into a healthcare
site, they could be identified and then removed in removal-practice,
or misclassified as controls in censor-practice if unidentified.
Compared to removal-practice, when the truncation-related mis-
classification rate is high, potential non-negligible bias could be
introduced by censor-practice even without delayed event time. In
practice, researchers could focus on reviewing individuals with a
diagnosis code at their first visit. Those patients are more likely
referred to the current hospital for a disease that was already diag-
nosed at another hospital. The medical history may summarize prior
diagnosed diseases, or even when the diagnosis occurred.
Completely identifying those patients could be challenging, especial-
ly for whom little medical history was taken. The performance
depends on the importance of the diagnosis and the quality of the
medical history. This challenge highlights the significance of having
a unified EHR system so that truncation is no longer a concern. It is
worth noting that in the simulation, we assumed no recurrence of
diagnosis codes after entering the current health system, which rep-
resents the worst scenario of misclassifying the patients with the
highest risk to those with the lowest risk. With recurrence of diagno-
sis codes, the bias due to censor-practice in practice would be less se-
vere than the results observed in the simulation study.

In our simulation study, we examined both independent and
conditionally non-informative censoring distributions. When the
censoring distribution depended on the exposure in addition to other
covariates, the performance of LRMobs and LRMu deteriorated with
inflated type I error rate and decreasing power with increased effect
size (see Supplementary Appendix SC, Supplementary Fig. S12), and
should be avoided.

There are limitations with the use of both Cox with no delayed
event time and the GWAS Catalog as the gold standards in the
GWAS application. We made the assumption that the associations
found to be significant by Cox with no delayed event time were the
truth based on previous work (Hughey et al., 2019) and the results
of the simulation study. These associations were used to calculate
the true positive and true negative rates of the other model/delayed
event time combinations, which could be misleading if some of the
significant associations are incorrect. In addition, the use of the
GWAS Catalog as the gold standard to determine the sensitivity of
the Cox models is limiting, since most of the known genotype–
phenotype associations were found by logistic or linear regression.
Thus, it does not apply directly to associations found by Cox regres-
sion. All of the methods showed low sensitivity due to being
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underpowered for detecting the associations. However, it is promis-
ing that both the simulations and the GWAS application indicated
that Cox regression has the best performance in detecting genotype–
phenotype associations, even with these limitations.

Lastly, we did not determine the exact magnitude of delayed
event time that would be acceptable in the EHR in order for the Cox
model to continue to outperform the logistic regression models, as
our main goal was to explore the impact of delayed event time on
the performance of the models in general. However, in the simula-
tions, we varied the parameters when simulating the delayed event
time to obtain different numbers of observations with a misclassified
event status, which led to different ranges of delayed event time
magnitude. For example, when there was a small number of misclas-
sified events and confounder-dependent delayed event time, we set
c1 ¼ 20 and c3 ¼ 60 days. To increase the proportion of misclassi-
fied events, we set c1 ¼ 60 and c3 ¼ 1400 days. Increasing the
magnitude of the delayed event time caused all the methods to be
invalid when there was exposure-dependent delayed event time, as
explained in Section 3.1.1. However, for the other delayed event

time scenarios, even when the magnitude of the delayed event time
was large, the Cox regression model performed either the same or

better as the logistic regression models in terms of statistical power,
and the type I error rate was controlled. This gives some insight into

the impact of the magnitude of delayed event time on the perform-
ance of the models.

5 Conclusion

Based on the use of both simulations and empirical data, we found

that while logistic regression does not model the time-to-event dir-
ectly, various logistic regression models used in the literature were

more sensitive to delayed event time than Cox regression. The simu-
lations highlighted the need to identify the patients having the dis-
ease of interest before entering the current healthcare system. With

those patients being properly identified and excluded from analysis,
Cox regression had similar or modest improvement in statistical

power over logistic regression at controlled type I error with or

Fig. 5. False positive and false negative SNPs for each model and delayed event time combination, using Model 1 (Cox) with no delayed event time as the gold standard, for all

ten phecodes. Dark green lines correspond to P � 5� 10�8 and light green lines correspond to P � 1� 10�5

Fig. 4. Average true positive rates for detecting significant SNPs from all ten phecodes for each model and delayed event time combination, using Model 1 (Cox) with no

delayed event time as the gold standard. This application corresponds to the delayed diagnosis set-up. *Based on Model 1 (Cox)—no delayed event time
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without the presence of delayed event time. These results were sup-

ported by the empirical data, where the Cox models steadily had the
highest sensitivity to detect known genotype–phenotype associations
under all scenarios of delayed event time. In the presence of delayed

event time scenarios that might exist in EHRs, Cox regression out-
performed the logistic regression models commonly used in genomic

studies. Among the three logistic regression models, the logistic re-
gression model that adjusts for record length, LRMrl, is the preferred
modeling scheme to use. The big discrepancy in the performance of

the three commonly used logistic regression models highlights the
needs to clarify the model used.

As stated in the Introduction, previous work has already
shown the advantages of Cox regression over logistic regression
in many scenarios (Staley et al., 2017; van der Net et al., 2008),

including for use in genomic studies that utilize the EHR (Hughey
et al., 2019). Our primary focus in this study was to determine if

Cox regression still outperformed logistic regression when the
time-to-event information in the EHR was incorrect, which we
found to be true. This indicates that Cox regression is the most

robust modeling scheme to delayed event time. Thus, even if time-
to-event information is inaccurate, Cox regression may improve

our ability to determine the significant genetic constitutes for a
variety of diseases.
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